Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 66(13): 6665-74, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16818640

ABSTRACT

Promoter hypermethylation and histone deacetylation are common epigenetic mechanisms implicated in the transcriptional silencing of tumor suppressor genes in human cancer. We treated two immortalized glioma cell lines, T98 and U87, and 10 patient-derived primary glioma cell lines with trichostatin A (TSA), a histone deacetylase inhibitor, or 5-aza-2'-deoxycytidine (5-AzaC), a DNA methyltransferase inhibitor, to comprehensively identify the cohort of genes reactivated through the pharmacologic reversal of these distinct but related epigenetic processes. Whole-genome microarray analysis identified genes induced by TSA (653) or 5-AzaC treatment (170). We selected a subset of reactivated genes that were markedly induced (greater than two-fold) after treatment with either TSA or 5-AzaC in a majority of glioma cell lines but not in cultured normal astrocytes. We then characterized the degree of promoter methylation and transcriptional silencing of selected genes in histologically confirmed human tumor and nontumor brain specimens. We identified two novel brain expressed genes, BEX1 and BEX2, which were silenced in all tumor specimens and exhibited extensive promoter hypermethylation. Viral-mediated reexpression of either BEX1 or BEX2 led to increased sensitivity to chemotherapy-induced apoptosis and potent tumor suppressor effects in vitro and in a xenograft mouse model. Using an integrated approach, we have established a novel platform for the genome-wide screening of epigenetically silenced genes in malignant glioma. This experimental paradigm provides a powerful new method for the identification of epigenetically silenced genes with potential function as tumor suppressors, biomarkers for disease diagnosis and detection, and therapeutically reversible modulators of critical regulatory pathways important in glioma pathogenesis.


Subject(s)
Brain Neoplasms/genetics , Genes, Tumor Suppressor , Glioma/genetics , Nerve Tissue Proteins/genetics , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Brain Neoplasms/pathology , DNA Methylation , Decitabine , Gene Expression/drug effects , Gene Expression Profiling , Gene Silencing , Genome, Human , Glioma/pathology , Histones/genetics , Histones/metabolism , Humans , Hydroxamic Acids/pharmacology , Promoter Regions, Genetic
2.
Nature ; 440(7084): 671-5, 2006 Mar 30.
Article in English | MEDLINE | ID: mdl-16572171

ABSTRACT

Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome.


Subject(s)
Chromosomes, Human, Pair 15/genetics , Evolution, Molecular , Gene Duplication , Animals , Conserved Sequence/genetics , Genes , Genome, Human , Haplotypes/genetics , Humans , Macaca mulatta/genetics , Molecular Sequence Data , Multigene Family/genetics , Phylogeny , Polymorphism, Genetic/genetics , Sequence Analysis, DNA , Synteny/genetics
3.
Infect Immun ; 73(5): 3096-103, 2005 May.
Article in English | MEDLINE | ID: mdl-15845517

ABSTRACT

Group B Streptococcus (GBS) is an important pathogen of neonates, pregnant women, and immunocompromised individuals. GBS isolates associated with human infection produce one of nine antigenically distinct capsular polysaccharides which are thought to play a key role in virulence. A comparison of GBS polysaccharide structures of all nine known GBS serotypes together with the predicted amino acid sequences of the proteins that direct their synthesis suggests that the evolution of serotype-specific capsular polysaccharides has proceeded through en bloc replacement of individual glycosyltransferase genes with DNA sequences that encode enzymes with new linkage specificities. We found striking heterogeneity in amino acid sequences of synthetic enzymes with very similar functions, an observation that supports horizontal gene transfer rather than stepwise mutagenesis as a mechanism for capsule variation. Eight of the nine serotypes appear to be closely related both structurally and genetically, whereas serotype VIII is more distantly related. This similarity in polysaccharide structure strongly suggests that the evolutionary pressure toward antigenic variation exerted by acquired immunity is counterbalanced by a survival advantage conferred by conserved structural motifs of the GBS polysaccharides.


Subject(s)
Bacterial Capsules/chemistry , Bacterial Proteins/genetics , Genetic Variation , Streptococcus agalactiae/classification , Bacterial Capsules/biosynthesis , Bacterial Capsules/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carbohydrate Sequence , Gene Transfer, Horizontal , Molecular Sequence Data , Multigene Family , Phylogeny , Recombination, Genetic , Sequence Analysis, DNA , Serotyping , Streptococcal Infections , Streptococcus agalactiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...