Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters











Publication year range
1.
Behav Pharmacol ; 35(7): 399-407, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39230435

ABSTRACT

The l -arginine ( l -Arg)/nitric oxide/cyclic GMP/potassium channel (K ATP ) pathway and opioid receptors are known to play critical roles in pain perception and the antinociceptive effects of various compounds. While there is evidence suggesting that the analgesic effects of rutin may involve nitric oxide modulation, the direct link between rutin and the l -Arg/nitric oxide/cyclic GMP/K ATP pathway in the context of pain modulation requires further investigation. The antinociceptive effect of rutin was studied in male NMRI mice using the formalin test. To investigate the role of the l -Arg/nitric oxide/cyclic GMP/K ATP pathway and opioid receptors, the mice were pretreated intraperitoneally with different substances. These substances included l -Arg (a precursor of nitric oxide), S-nitroso- N -acetylpenicillamine (SNAP, a nitric oxide donor), N(gamma)-nitro- l -arginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase), sildenafil (an inhibitor of phosphodiesterase enzyme), glibenclamide (a K ATP channel blocker), and naloxone (an opioid receptor antagonist). All pretreatments were administered 20 min before the administration of the most effective dose of rutin. Based on our investigation, it was found that rutin exhibited a dose-dependent antinociceptive effect. The administration of SNAP enhanced the analgesic effects of rutin during both the initial and secondary phases. Moreover, L-NAME, naloxone, and glibenclamide reduced the analgesic effects of rutin in both the primary and secondary phases. In conclusion, rutin holds significant value as a flavonoid with analgesic properties, and its analgesic effect is directly mediated through the nitric oxide/cyclic GMP/K ATP channel pathway.


Subject(s)
Analgesics , Arginine , Cyclic GMP , KATP Channels , NG-Nitroarginine Methyl Ester , Nitric Oxide , Receptors, Opioid , Rutin , Signal Transduction , Animals , Male , Mice , Arginine/pharmacology , Nitric Oxide/metabolism , Rutin/pharmacology , Analgesics/pharmacology , Signal Transduction/drug effects , Receptors, Opioid/metabolism , Receptors, Opioid/drug effects , KATP Channels/metabolism , Cyclic GMP/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Glyburide/pharmacology , Sildenafil Citrate/pharmacology , Pain Measurement/drug effects , Pain Measurement/methods , Naloxone/pharmacology , Sulfones/pharmacology , Piperazines/pharmacology , Purines/pharmacology , S-Nitroso-N-Acetylpenicillamine/pharmacology , Pain/drug therapy , Pain/metabolism , Narcotic Antagonists/pharmacology , Dose-Response Relationship, Drug , Nitric Oxide Donors/pharmacology
2.
BMC Cancer ; 24(1): 1079, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223494

ABSTRACT

BACKGROUND: Due to the complex pathophysiological mechanisms involved in cancer progression and metastasis, current therapeutic approaches lack efficacy and have significant adverse effects. Therefore, it is essential to establish novel strategies for combating cancer. Phytochemicals, which possess multiple biological activities, such as antioxidant, anti-inflammatory, antimutagenic, immunomodulatory, antiproliferative, anti-angiogenesis, and antimetastatic properties, can regulate cancer progression and interfere in various stages of cancer development by suppressing various signaling pathways. METHODS: The current systematic and comprehensive review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria, using electronic databases, including PubMed, Scopus, and Science Direct, until the end of December 2023. After excluding unrelated articles, 111 related articles were included in this systematic review. RESULTS: In this current review, the major signaling pathways of cancer metabolism are highlighted with the promising anticancer role of phytochemicals. This was through their ability to regulate the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. The AMPK/PGC-1α signaling pathway plays a crucial role in cancer cell metabolism via targeting energy homeostasis and mitochondria biogenesis, glucose oxidation, and fatty acid oxidation, thereby generating ATP for cell growth. As a result, targeting this signaling pathway may represent a novel approach to cancer treatment. Accordingly, alkaloids, phenolic compounds, terpene/terpenoids, and miscellaneous phytochemicals have been introduced as promising anticancer agents by regulating the AMPK/PGC-1α signaling pathway. Novel delivery systems of phytochemicals targeting the AMPK/PGC-1α pathway in combating cancer are also highlighted in this review.


Subject(s)
AMP-Activated Protein Kinases , Neoplasms , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phytochemicals , Signal Transduction , Humans , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , AMP-Activated Protein Kinases/metabolism , Signal Transduction/drug effects
3.
J Res Med Sci ; 29: 32, 2024.
Article in English | MEDLINE | ID: mdl-39239072

ABSTRACT

Background: This article introduces the first national guidelines for the management including diagnosis, treatment, and secondary prevention of acute coronary syndrome (ACS) in Iran. Materials and Methods: The members of the guideline development group (GDG) were specialists and experts in fields related to ACS and were affiliated with universities of medical sciences or scientific associations in the country. They carefully examined the evidence and clinical concerns related to ACS management and formulated 13 clinical questions that were sent to systematic review group who developed related evidence using Grade method. Finally the GDG developed the recommendations and suggestions of the guideline. Results: The first three questions in the guideline focus on providing recommendations for handling a patient who experience chest pain at home, in a health house or center, during ambulance transportation, and upon arrival at the emergency department (ED) as well as the initial diagnostic measures in the ED. Subsequently, the recommendations related to the criteria for categorizing patients into low, intermediate and high-risk groups are presented. The guideline addressed primary treatment measures for ACS patients in hospitals with and without code 247 or having primary percutaneous coronary intervention (PCI) facilities, and the appropriate timing for PCI based on the risk assessment. In addition, the most efficacious antiplatelet medications for ACS patients in the ED as well as its optimal duration of treatment are presented. The guideline details the recommendations for therapeutic interventions in patients with ACS and acute heart failure, cardiogenic shock, myocardial infarction with nonobstructive coronary arteries (MINOCA), multivessel occlusion, as well as the indication for prescribing a combined use of anticoagulants and antiplatelet during hospitalization and upon discharge. Regarding secondary prevention, while emphasizing the referral of these patients to rehabilitation centers, other interventions that include pharmaceutical and nonpharmacological ones are addressed, In addition, necessary recommendations for enhancing lifestyle and posthospital discharge pharmaceutical treatments, including their duration, are provided. There are specific recommendations and suggestions for subgroups, such as patients aged over 75 years and individuals with heart failure, diabetes, and chronic kidney disease. Conclusion: Developing guidelines for ACS diagnosis, treatment and secondary prevention according to the local context in Iran can improve the adherence of our health care providers, patients health, and policy makers plans.

4.
Front Pharmacol ; 15: 1452989, 2024.
Article in English | MEDLINE | ID: mdl-39193334

ABSTRACT

Background: Considering the complex pathological mechanisms behind spinal cord injury (SCI) and the adverse effects of present non-approved drugs against SCI, new studies are needed to introduce novel multi-target active ingredients with higher efficacy and lower side effects. Polydatin (PLD) is a naturally occurring stilbenoid glucoside recognized for its antioxidative and anti-inflammatory properties. This study aimed to assess the effects of PLD on sensory-motor function following SCI in rats. Methods: Following laminectomy and clip compression injury at the thoracic 8 (T8)-T9 level of the spinal cord, rats were randomly assigned to five groups: Sham, SCI, and three groups receiving different doses of PLD treatment (1, 2, and 3 mg/kg). Over 4 weeks, behavioral tests were done such as von Frey, acetone drop, hot plate, Basso-Beattie-Bresnahan, and inclined plane test. At the end of the study, changes in catalase and glutathione activity, nitrite level, activity of matrix metalloproteinase 2 (MMP2) and MMP9 as well as spinal tissue remyelination/neurogenesis, were evaluated. Results: The results revealed that PLD treatment significantly improved the behavioral performance of the animals starting from the first week after SCI. Additionally, PLD increased catalase, and glutathione levels, and MMP2 activity while reduced serum nitrite levels and MMP9. These positive effects were accompanied by a reduction in the size of the lesion and preservation of neuronal count. Conclusion: In conclusion, PLD showed neuroprotective effects in SCI rats by employing anti-inflammatory and antioxidant effects, through which improve sensory and motor function.

5.
Arch Toxicol ; 98(8): 2331-2351, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837048

ABSTRACT

As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.


Subject(s)
Curcumin , Curcumin/pharmacology , Curcumin/chemistry , Humans , Animals , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/etiology , Antioxidants/pharmacology , Antioxidants/chemistry , Liver/drug effects , Liver/pathology , Protective Agents/pharmacology , Protective Agents/chemistry , Nanoparticles , Apoptosis/drug effects , Oxidative Stress/drug effects
6.
Phytother Res ; 38(7): 3736-3762, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776136

ABSTRACT

Recently, malignant neoplasms have growingly caused human morbidity and mortality. Head and neck cancer (HNC) constitutes a substantial group of malignancies occurring in various anatomical regions of the head and neck, including lips, mouth, throat, larynx, nose, sinuses, oropharynx, hypopharynx, nasopharynx, and salivary glands. The present study addresses the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway as a possible therapeutic target in cancer therapy. Finding new multitargeting agents capable of modulating PI3K/Akt/mTOR and cross-linked mediators could be viewed as an effective strategy in combating HNC. Recent studies have introduced phytochemicals as multitargeting agents and rich sources for finding and developing new therapeutic agents. Phytochemicals have exhibited immense anticancer effects, including targeting different stages of HNC through the modulation of several signaling pathways. Moreover, phenolic/polyphenolic compounds, alkaloids, terpenes/terpenoids, and other secondary metabolites have demonstrated promising anticancer activities because of their diverse pharmacological and biological properties like antiproliferative, antineoplastic, antioxidant, and anti-inflammatory activities. The current review is mainly focused on new therapeutic strategies for HNC passing through the PI3K/Akt/mTOR pathway as new strategies in combating HNC.


Subject(s)
Head and Neck Neoplasms , Phosphatidylinositol 3-Kinases , Phytochemicals , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Head and Neck Neoplasms/drug therapy , Signal Transduction/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Antineoplastic Agents, Phytogenic/pharmacology
7.
J Ethnopharmacol ; 323: 117708, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38181932

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fraxinus excelsior L. (FE), commonly known as the ash, belongs to the Oleaceae family and has shown several pharmacological and biological properties, such as antioxidant, immunomodulatory, neuroprotective, and anti-inflammatory effects. It has also attracted the most attention toward neuroinflammation. Moreover, FE bark and leaves have been used to treat neurological disorders, aging, neuropathic pain, urinary complaints, and articular pain in traditional and ethnomedicine. Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder resulting from the involvement of amyloid-beta, metal-induced oxidative stress, and neuroinflammation. AIM OF THE STUDY: The objective of the current study was to assess the neuroprotective effects of hydromethanolic extract from FE bark in an AlCl3-induced rat model of AD. MATERIALS AND METHODS: The maceration process was utilized to prepare the hydromethanolic extract of FE bark, and characterized by LC-MS/MS. To assess the anti-AD effects of the FE extract, rats were categorized into five different groups, AlCl3; normal control; FE-treated groups at 50, 100, and 200 mg/kg. Passive avoidance learning test, Y-maze, open field, and elevated plus maze behavioral tests were evaluated on days 7 and 14 to analyze the cognitive impairments. Zymography analysis, biochemical tests, and histopathological changes were also followed in different groups. RESULTS: LC-MS/MS analysis indicated the presence of coumarins, including isofraxidin7-O-diglucoside in the methanolic extract of FE as a new isofraxidin derivative in this genus. FE significantly improved memory and cognitive function, maintained weight, prevented neuronal damages, and preserved the hippocampus's histological features, as demonstrated by behavioral tests and histopathological analysis. FE increased anti-inflammatory MMP-2 activity, whereas it decreased that of inflammatory MMP-9. Moreover, FE increased plasma antioxidant capacity by enhancing CAT and GSH while decreasing nitrite levels in the serum of treated groups. In comparison between the treated groups, the rats that received high doses of the FE extract (200 mg/kg) showed the highest therapeutic effect. CONCLUSION: FE rich in coumarins could be an effective anti-AD adjunct agent, passing through antioxidant and anti-inflammatory pathways. These results encourage further studies for the development of this extract as a promising agent in preventing, managing, or treating AD and related diseases.


Subject(s)
Alzheimer Disease , Fraxinus , Neuroprotective Agents , Rats , Animals , Aluminum Chloride/pharmacology , Aluminum Chloride/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Fraxinus/metabolism , Neuroinflammatory Diseases , Plant Bark/metabolism , Chromatography, Liquid , Rats, Wistar , Disease Models, Animal , Tandem Mass Spectrometry , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Coumarins/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
8.
Cancer Metastasis Rev ; 43(1): 261-292, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38169011

ABSTRACT

Plasticity of phenotypic traits refers to an organism's ability to change in response to environmental stimuli. As a result, the response may alter an organism's physiological state, morphology, behavior, and phenotype. Phenotypic plasticity in cancer cells describes the considerable ability of cancer cells to transform phenotypes through non-genetic molecular signaling activities that promote therapy evasion and tumor metastasis via amplifying cancer heterogeneity. As a result of metastable phenotypic state transitions, cancer cells can tolerate chemotherapy or develop transient adaptive resistance. Therefore, new findings have paved the road in identifying factors and agents that inhibit or suppress phenotypic plasticity. It has also investigated novel multitargeted agents that may promise new effective strategies in cancer treatment. Despite the efficiency of conventional chemotherapeutic agents, drug toxicity, development of resistance, and high-cost limit their use in cancer therapy. Recent research has shown that small molecules derived from natural sources are capable of suppressing cancer by focusing on the plasticity of phenotypic responses. This systematic, comprehensive, and critical review analyzes the current state of knowledge regarding the ability of phytocompounds to target phenotypic plasticity at both preclinical and clinical levels. Current challenges/pitfalls, limitations, and future perspectives are also discussed.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasms , Humans , Epithelial-Mesenchymal Transition/physiology , Neoplasms/drug therapy , Neoplasms/pathology , Signal Transduction , Adaptation, Physiological , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
9.
Cancer Metastasis Rev ; 43(1): 501-574, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37792223

ABSTRACT

Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.


Subject(s)
Hypoxia-Inducible Factor 1 , Neoplasms , Humans , Cell Line, Tumor , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Neoplasms/drug therapy , Neoplasms/pathology , Neovascularization, Pathologic , Signal Transduction
10.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4771-4790, 2024 07.
Article in English | MEDLINE | ID: mdl-38150015

ABSTRACT

Rheumatoid arthritis (RA) is the most common chronic inflammatory disease, primarily affecting the joints and with stromal tissue dysregulation causing chronic inflammation and joint destruction. Rutin is a natural flavonoid with potential therapeutic properties in chronic destructive conditions including rheumatoid diseases. In this study, the protective effects of rutin nanoformulation in an animal model of rheumatoid arthritis caused by Freund's complete adjuvant (FCA) were investigated. Sixty male rats were randomly divided into ten groups including normal, negative control, prednisolone 10 mg/kg (positive control), 3 doses of rutin (15, 30, 45mg/kg), rutin nanoparticles (15, 30, 45 mg/kg), and nanoparticle without rutin, for 28 days. Different behavioral parameters including the open field test, acetone drop test, hot plate test, Von Frey test, and inclined plane test were evaluated. Serum levels of glutathione (GSH), catalase, and nitric oxide as well as histopathological analyses were measured in different groups. Also, matrix metalloproteinase (MMP)-2 and MMP-9 activity were appraised by gelatin zymography. The injection of FCA prolonged the rats' immobility duration in comparison to the control group. Rheumatoid arthritis induction also increased nitric oxide and decreased GSH and catalase levels, while these effects were reversed in the groups that received nanoparticles containing rutin and prednisolone. Rutin nanoparticles suppressed MMP-9 and activated MMP-2. Also, this rutin drug delivery system plays a significant role in the improvement of histopathological symptoms. Considering the improvement of behavioral and tissue symptoms and the modulation of the level of inflammatory cytokines, nanoparticles containing rutin can be proposed as a suitable approach in the management of patients with rheumatoid arthritis.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Experimental , Arthritis, Rheumatoid , Chitosan , Freund's Adjuvant , Nanoparticles , Oxidative Stress , Rats, Wistar , Rutin , Animals , Rutin/pharmacology , Rutin/administration & dosage , Rutin/therapeutic use , Male , Oxidative Stress/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/administration & dosage , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/chemically induced , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/chemically induced , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Rats , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/metabolism , Drug Carriers/chemistry , Behavior, Animal/drug effects , Glutathione/metabolism , Nitric Oxide/metabolism , Inflammation/drug therapy , Inflammation/pathology
11.
Cancer Metastasis Rev ; 42(3): 959-1020, 2023 09.
Article in English | MEDLINE | ID: mdl-37505336

ABSTRACT

The tumor microenvironment (TME) plays a pivotal role in cancer development and progression. In this line, revealing the precise mechanisms of the TME and associated signaling pathways of tumor resistance could pave the road for cancer prevention and efficient treatment. The use of nanomedicine could be a step forward in overcoming the barriers in tumor-targeted therapy. Novel delivery systems benefit from enhanced permeability and retention effect, decreasing tumor resistance, reducing tumor hypoxia, and targeting tumor-associated factors, including immune cells, endothelial cells, and fibroblasts. Emerging evidence also indicates the engagement of multiple dysregulated mediators in the TME, such as matrix metalloproteinase, vascular endothelial growth factor, cytokines/chemokines, Wnt/ß-catenin, Notch, Hedgehog, and related inflammatory and apoptotic pathways. Hence, investigating novel multitargeted agents using a novel delivery system could be a promising strategy for regulating TME and drug resistance. In recent years, small molecules from natural sources have shown favorable anticancer responses by targeting TME components. Nanoformulations of natural compounds are promising therapeutic agents in simultaneously targeting multiple dysregulated factors and mediators of TME, reducing tumor resistance mechanisms, overcoming interstitial fluid pressure and pericyte coverage, and involvement of basement membrane. The novel nanoformulations employ a vascular normalization strategy, stromal/matrix normalization, and stress alleviation mechanisms to exert higher efficacy and lower side effects. Accordingly, the nanoformulations of anticancer monoclonal antibodies and conventional chemotherapeutic agents also improved their efficacy and lessened the pharmacokinetic limitations. Additionally, the coadministration of nanoformulations of natural compounds along with conventional chemotherapeutic agents, monoclonal antibodies, and nanomedicine-based radiotherapy exhibits encouraging results. This critical review evaluates the current body of knowledge in targeting TME components by nanoformulation-based delivery systems of natural small molecules, monoclonal antibodies, conventional chemotherapeutic agents, and combination therapies in both preclinical and clinical settings. Current challenges, pitfalls, limitations, and future perspectives are also discussed.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Microenvironment , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor A/therapeutic use , Neoplasms/pathology , Drug Resistance , Antibodies, Monoclonal/therapeutic use , Drug Delivery Systems
12.
Phytomedicine ; 115: 154821, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37119761

ABSTRACT

BACKGROUND: Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE: Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS: A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS: From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION: Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.


Subject(s)
Antineoplastic Agents , Mitogen-Activated Protein Kinases , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , MAP Kinase Signaling System , Phosphorylation , Antineoplastic Agents/pharmacology
13.
Article in English | MEDLINE | ID: mdl-37061329

ABSTRACT

Senescence-like cell cycle arrest is a critical state of cancer initiation and progression. Senescence is an irreversible cell cycle arrest in response to stress induced by extrinsic and intrinsic stimuli, including oxidative/genotoxic stress, oncogenic activation, irradiation, mitochondrial malfunction, or chemotherapeutic drugs. Several signaling pathways are involved in senescence-like cell cycle arrest, which is primarily induced by the activation of p53/p21-dependent apoptotic pathways and suppressing p16INK4A/retinoblastoma protein (pRB)-dependent oncogenic pathways. p21 is necessary for proper cell cycle advancement, is involved in cell death, and mediates p53-dependent cell cycle arrest caused by DNA damage. pRB's role in tumor suppression is through modulation of the G1 checkpoint in the cell cycle, as it has the ability to block S-phase entry and cell growth. The aforementioned pathways are also highly interconnected with significant crosstalk, such as cyclin-dependent kinases (CDK)/cyclin complexes, and the dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex. The primary regulators of transcription are p53 and pRB, which maintain the senescent state through negative control of the cell cycle and process of tumorigenesis. Because CDK inhibitors comprise negative regulators of cell cycle progress, they are fundamental parts of each route. Prolonged overexpression of any of these four fundamental elements (p16, p53, p21, and pRB) suffices to induce senescence, demonstrating how the regulatory DREAM complex causes senescence and how its malfunction results in cell cycle progression. The present chapter aims at revealing the pivotal mechanisms behind the senescence-like cell cycle arrest in cancer.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cell Cycle Checkpoints , Cell Cycle , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Retinoblastoma Protein/metabolism , Neoplasms/genetics
14.
Metabolites ; 13(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36984763

ABSTRACT

Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis. In this study, a comprehensive review is performed on electronic databases, including PubMed, Scopus, ScienceDirect, and ProQuest. Accordingly, the structural characteristics of triterpenoid/steroid saponins and their anti-cancer effects were highlighted, focusing on their anti-angiogenic effects and related mechanisms. Consequently, the anti-angiogenic effects of saponins, inhibiting the expression of genes related to vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-α (HIF-1α) are two main anti-angiogenic mechanisms of triterpenoid and steroidal saponins. The inhibition of inflammatory signaling pathways that stimulate angiogenesis, such as pro-inflammatory cytokines, mitogen-activated protein kinase (MAPKs), and phosphoinositide 3-kinases/protein kinase B (PI3K/Akt), are other anti-angiogenic mechanisms of saponins. Furthermore, the anti-angiogenic and anti-cancer activity of saponins was closely related to the binding site of the sugar moiety, the type and number of their monosaccharide units, as well as the presence of some functional groups in their aglycone structure. Therefore, saponins are suitable candidates for cancer treatment by inhibiting angiogenesis, for which extensive pre-clinical and comprehensive clinical trial studies are recommended.

15.
Pharmaceutics ; 15(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36986865

ABSTRACT

As major public health concerns associated with a rapidly growing aging population, neurodegenerative diseases (NDDs) and neurological diseases are important causes of disability and mortality. Neurological diseases affect millions of people worldwide. Recent studies have indicated that apoptosis, inflammation, and oxidative stress are the main players of NDDs and have critical roles in neurodegenerative processes. During the aforementioned inflammatory/apoptotic/oxidative stress procedures, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a crucial role. Considering the functional and structural aspects of the blood-brain barrier, drug delivery to the central nervous system is relatively challenging. Exosomes are nanoscale membrane-bound carriers that can be secreted by cells and carry several cargoes, including proteins, nucleic acids, lipids, and metabolites. Exosomes significantly take part in the intercellular communications due to their specific features including low immunogenicity, flexibility, and great tissue/cell penetration capabilities. Due to their ability to cross the blood-brain barrier, these nano-sized structures have been introduced as proper vehicles for central nervous system drug delivery by multiple studies. In the present systematic review, we highlight the potential therapeutic effects of exosomes in the context of NDDs and neurological diseases by targeting the PI3K/Akt/mTOR signaling pathway.

16.
IET Nanobiotechnol ; 17(3): 154-170, 2023 May.
Article in English | MEDLINE | ID: mdl-36949020

ABSTRACT

Alzheimer's disease (AD) is one of the chief neurological difficulties in the aged population, identified through dementia, memory disturbance, and reduced cognitive abilities. ß-amyloid (Aß) plaques aggregations, generation of reactive oxygen species, and mitochondrial dysfunction are among the major signs of AD. Regarding the urgent need for the development of novel treatments for neurodegenerative diseases, researchers have recently perused the function of natural phytobioactive combinations, such as resveratrol (RES), in vivo and in vitro (animal models of AD). Investigations have shown the neuroprotective action of RES. This compound can be encapsulated by several methods (e.g. polymeric nanoparticles (NPs), solid lipid nanoparticles, Micelles, and liposomes). This antioxidant compound, however, barely crosses the blood-brain barrier (BBB), thereby limiting its bioavailability and stability at the target sites in the brain. Thanks to nanotechnology, the efficiency of AD therapy can be improved by encapsulating the drugs in a NP with a controlled size (1-100 nm). This article addressed the use of RES, as a Phytobioactive compound, to decrease the oxidative stress. Encapsulation of this compound in the form of nanocarriers to treat neurological diseases to improve BBB crossing is also discussed.


Subject(s)
Alzheimer Disease , Nanoparticles , Animals , Alzheimer Disease/drug therapy , Resveratrol/therapeutic use , Brain/metabolism , Amyloid beta-Peptides , Blood-Brain Barrier/metabolism
17.
Brief Funct Genomics ; 22(2): 143-160, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36722043

ABSTRACT

Neurodegenerative diseases (NDDs) are on the rise in the world. Therefore, it is a critical issue to reveal the precise pathophysiological mechanisms and novel therapeutic strategies to deal with such conditions. Passing through different mechanisms, non-coding RNAs (ncRNAs) play a pivotal role in NDDs through various mechanisms, by changing the expression of some genes, interference with protein translation and alterations in some signaling pathways. It urges the need to introduce novel strategies and therapeutic agents with multi-targeting potentials. Phytochemicals are hopeful antioxidants and anti-inflammatory agents with promising modulatory roles on dysregulated signaling pathways and protein translation during NDDs. In this study, the role of ncRNAs (e.g. lncRNAs, miRNA, siRNAs and piRNAs) was highlighted in NDDs. This study also aimed to investigate the role of phytochemicals (phenolic compounds, alkaloids, terpenoids and sulfur compounds) in the modulation of ncRNAs during NDDs such as Alzheimer's disease, Parkinson's disease, epilepsy, depression and amyotrophic lateral sclerosis.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , RNA, Untranslated/genetics , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
18.
Phytomedicine ; 112: 154686, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36804755

ABSTRACT

BACKGROUND: Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE: Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS: A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS: In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION: Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.


Subject(s)
Alkaloids , Biological Products , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Janus Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Polyphenols/pharmacology , Signal Transduction , Alkaloids/pharmacology
19.
Life (Basel) ; 12(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36556325

ABSTRACT

Spinal cord injury (SCI) possesses a complicated etiology. There is no FDA-approved treatment for SCI, and the majority of current interventions focus on reducing symptoms. During SCI, inflammation, oxidative stress, apoptosis, and autophagy are behind the secondary phase of SCI and cause serious consequences. It urges the need for providing multi-targeting agents, that possess lower side effects and higher efficacy. The plant secondary metabolites are multi-targeting agents and seem to provide new roads in combating diseases. Flavonoids are phytochemicals of continual interest to scientists in combating neurodegenerative diseases (NDDs). Flavonoids are being studied for their biological and pharmacological effects, particularly as antioxidants, anti-inflammatory agents, anti-apoptotic, and autophagy regulators. Quercetin is one of the most well-known flavonols known for its preventative and therapeutic properties. It is a naturally occurring bioactive flavonoid that has recently received a lot of attention for its beneficial effects on NDDs. Several preclinical evidence demonstrated its neuroprotective effects. In this systematic review, we aimed at providing the biological activities of quercetin and related derivatives against SCI. Detailed neuroprotective mechanisms of quercetin derivatives are also highlighted in combating SCI.

20.
Iran J Basic Med Sci ; 25(9): 1150-1158, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36246060

ABSTRACT

Objectives: Therapeutic strategies that facilitate extinction are promising in the treatment of post-traumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) has a crucial role in neural plasticity, a process needed for the retention of fear extinction. In this study, we investigated the effects of local administration of a histone deacetylase (HDAC) inhibitor, sodium butyrate (NaBu), on BDNF transcription and behavioral markers of extinction in the single prolonged stress (SPS) model of PTSD. Materials and Methods: NaBu was infused into the infralimbic (IL) subregion of the medial prefrontal cortex (mPFC) of male rats. The freezing response was recorded as the criterion to assess fear strength on the day of extinction as well as 24 hr later in the retention test. Other behavioral tests were also measured to evaluate the anxiety level, locomotor activity, and working memory on the retention day. HDAC activity and BDNF mRNA expression were evaluated after the behavioral experiments. Results: NaBu facilitated the recall of fear extinction in SPS rats (P<0.0001). SPS rats had higher HDAC activity (P<0.0001) and lower BDNF expression (P<0.05) than non-SPS animals. Also, anxiety was higher in the SPS group (P<0.0001), but locomotor activity (P=0.61) and working memory (P=0.36) were not different between SPS and Non-SPS groups. Conclusion: Our findings provide evidence that the mechanism of action of NaBu in the improvement of extinction recall is mediated, in part, by enhancing histone acetylation and reviving BDNF expression in IL.

SELECTION OF CITATIONS
SEARCH DETAIL