Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
J Glob Antimicrob Resist ; 38: 111-115, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795772

ABSTRACT

OBJECTIVES: The emergence of antimicrobial-resistant and mastitis-associated Enterococcus faecalis and Enterococcus faecium is of great concern due to the huge economic losses associated with enterococcal infections. Here we report the draft genome sequences of E. faecalis and E. faecium strains that were isolated from raw milk samples obtained from mastitis-infected cows in Bangladesh. METHODS: The two strains were isolated, identified, and genomic DNA was sequenced using the Illumina NextSeq 550 platform. The assembled contigs were analysed for virulence, antimicrobial resistance genes, and multilocus sequence type. The genomes were compared to previously reported E. faecalis and E. faecium genomes to generate core genome phylogenetic trees. RESULTS: E. faecalis strain BR-MHR218Efa and E. faecium strain BR-MHR268Efe belonged to multilocus sequence types ST-190 and ST-22, respectively, both of which appear to represent relatively rare sequence types. BR-MHR268Efe harboured only one antibiotic resistance gene encoding resistance towards macrolides (lsa(A)), while BR-MHR218Efa harboured ten different antibiotic resistance genes encoding resistance to aminoglycosides (ant[6]-Ia, aph(3')-III), sulphonamides (aac(6')-II), lincosamides (lnu(B)), macrolides (erm(B)), MLSB antibiotics (msr(C)), tetracyclines (tet(M), tet(L)), trimethoprim (dfrG), and pleuromutilin-lincosamide-streptogramin A (lsa(E)). Virulence gene composition was different between the two isolates. BR-MHR218Efa harboured only two virulence genes involved in adherence (acm and scm). BR-MHR268Efe harboured eight complete virulence operons including three operons involved in adherence (Ace, Ebp pili, and EfaA), two operons involved in biofilm formation (BopD and Fsr), and three exoenzymes (gelatinase, hyaluronidase, SprE). CONCLUSIONS: The genome sequences of the strains BR-MHR268Efe and BR-MHR218Efa will serve as a reference point for molecular epidemiological studies of mastitis-associated E. faecalis and E. faecium. Additionally, the findings will help understand the complex antimicrobial-resistance in livestock-assoiated Enterococci.

2.
J Genomics ; 12: 19-25, 2024.
Article in English | MEDLINE | ID: mdl-38321997

ABSTRACT

The emergence of antimicrobial-resistant and mastitis-associated Staphylococcus aureus is of great concern due to the huge economic losses worldwide. Here, we report draft genome sequences of two Staphylococcus aureus strains which were isolated from raw milk samples obtained from mastitis-infected cows in Bangladesh. The strains were isolated and identified using conventional microbiological and molecular polymerase chain reaction (PCR) methods. Antibiotic susceptibility testing was performed. Genomic DNA of the two strains was extracted and the strains were sequenced using the Illumina NextSeq 550 platform. The assembled contigs were analyzed for virulence determinants, antimicrobial resistance genes, extra-chromosomal plasmids, and multi-locus sequence type (MLST). The genomes of the two strains were compared with other publicly available genome sequences of Staphylococcus aureus strains. The raw read sequences were downloaded and all sequence files were analyzed identically to generate core genome phylogenetic trees. The genome of BR-MHR281strain did not harbour any antibiotic resistance determinants, however BR-MHR220 strain harbored mecA and blaZ genes. Analysis of BR-MHR220 strain revealed that it was assigned to sequence type (ST-6), clonal complex (CC) 5 and spa type t304, while BR-MHR281 strain belonged to ST-2454, CC8, and harbored the spa type t7867. The findings of the present study and the genome sequences of BR-MHR220 and BR-MHR281 strains will provide data on the detection and genomic analysis and characterization of mastitis-associated Staphylococcus aureus in Bangladesh. In addition, the findings of the present study will serve as reference genomes for future molecular epidemiological studies and will provide significant data which help understand the prevalence, pathogenesis and antimicrobial resistance of mastitis-associated Staphylococcus aureus.

3.
Microbiol Resour Announc ; 13(3): e0096723, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38323846

ABSTRACT

Here, we report the draft genome sequences of two Bacillus licheniformis strains harboring the lichenysin operon that were isolated from healthy goat and horse in South Africa. The genomes were sequenced using Illumina MiSeq and had a length of 4,152,826 and 4,110,075 bp, respectively, with a G + C content of 46%.

4.
Microbiol Spectr ; 12(1): e0256423, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38084979

ABSTRACT

IMPORTANCE: Current infection control protocols assume that the spread of KPC-2 carbapenemase-producing Enterobacterales (KPC2-CPE) by detected carriers to other in-house patients is through clonal transmission and can be restricted by implementing containment measures. We examined the presence of the bla KPC-2 gene in different genera and species of Enterobacterales isolated from humans at different hospitals and surface waters between 2013 and 2019 in Germany. We found that a single IncN[pMLST15] plasmid carrying the bla KPC-2 gene on a novel non-Tn4401-element (NTEKPC-Y), flanked by an adjacent region encoding 12 other antibiotic resistance genes, was uniquely present in multiple species of KPC2-CPE isolates. These findings demonstrate the selective impact of specific IncN plasmids as major drivers of carbapenemase dissemination and suggest "plasmid-based endemicity" for KPC2-CPE. Studies on the dynamics of plasmid-based KPC2-CPE transmission and its presence in persistent reservoirs need to be urgently considered to implement effective surveillance and prevention measures in healthcare institutions.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Klebsiella Infections/epidemiology , Plasmids/genetics , Bacterial Proteins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
6.
Sci Rep ; 13(1): 18609, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903806

ABSTRACT

The emergence of antimicrobial-resistant, livestock-associated Enterococcus faecalis represents a public health concern. Here, we report the isolation, molecular detection of virulence and antimicrobial resistance determinants, in addition to the phylogenetic analyses of 20 Enterococcus species using whole genome sequencing analysis of 15 Enterococcus faecalis strains including six strains of three novel sequence types, three Enterococcus faecium and two Enterococcus durans. All strains were isolated from food chain animals in South Africa. Enterococcus strains were isolated on bile aesculin azide agar, followed by identification using MALDI-TOF MS analysis. Antibiotic susceptibility testing was performed using the Kirby-Bauer disk diffusion method. The genomic DNA of the isolates was extracted and sequencing was performed using the Illumina MiSeq platform. Sequence reads were trimmed and de novo assembled. The assembled contigs were analyzed for antimicrobial resistance genes and chromosomal mutations, extra-chromosomal plasmids, and multi-locus sequence type (MLST). Multidrug antimicrobial resistance genes conferring resistance to aminoglycosides (ant(6)-Ia, aph(3')-IIIa, sat4, and spw), lincosamides (lnu(B), lsa(A), and lsa(E)), macrolides (erm(B)), trimethoprim (dfrG) and tetracyclines (tet(L) and tet(M)) were identified. Plasmid replicons were detected in seven E. faecalis and three E. faecium isolates. The sequence type (ST) of each isolate was determined using the Enterococcus PubMLST database. Ten STs were identified in the collection, three of which (ST1240, ST1241, and ST1242) have not been previously reported and are described in the present study for the first time. To compare the sequenced strains to other previously sequenced E. faecalis strains, assembled sequences of E. faecalis from livestock were downloaded from the PubMLST database. Core genome-based phylogenetic analysis was performed using ParSNP. The detection of multiple drug-resistance in Enterococcus including E. faecalis and E. faecium highlights the significance of genomic surveillance to monitor the spread of antimicrobial resistance in food chain animals. In addition, the genome sequences of Enterococcus strains reported in the present study will serve as a reference point for future molecular epidemiological studies of livestock-associated and antibiotic-resistant E. faecalis in Africa. In addition, this study enables the in-depth analysis of E. faecalis genomic structure, as well as provides valuable information on the phenotypic and genotypic antimicrobial resistance, and the pathogenesis of livestock-associated E. faecalis and E. faecium.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Animals , Enterococcus faecalis , Anti-Bacterial Agents/pharmacology , Livestock/genetics , Phylogeny , Multilocus Sequence Typing , Drug Resistance, Bacterial/genetics , Enterococcus/genetics , Whole Genome Sequencing , South Africa , Microbial Sensitivity Tests , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/epidemiology
7.
Microbiol Resour Announc ; 12(8): e0016623, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37428031

ABSTRACT

Here, we report the draft genome sequences of two Escherichia coli strains that were isolated from raw milk samples obtained from lactating cows with mastitis in Bangladesh. One strain was assigned to a novel sequence type 13054, and the other strain belonged to sequence type 101.

8.
Microbiol Spectr ; 11(3): e0359222, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37071007

ABSTRACT

The envelope stress response (ESR) of Gram-negative enteric bacteria senses fluctuations in nutrient availability and environmental changes to avert damage and promote survival. It has a protective role toward antimicrobials, but direct interactions between ESR components and antibiotic resistance genes have not been demonstrated. Here, we report interactions between a central regulator of ESR viz., the two-component signal transduction system CpxRA (conjugative pilus expression), and the recently described mobile colistin resistance protein (MCR-1). Purified MCR-1 is specifically cleaved within its highly conserved periplasmic bridge element, which links its N-terminal transmembrane domain with the C-terminal active-site periplasmic domain, by the CpxRA-regulated serine endoprotease DegP. Recombinant strains harboring cleavage site mutations in MCR-1 are either protease resistant or degradation susceptible, with widely differing consequences for colistin resistance. Transfer of the gene encoding a degradation-susceptible mutant to strains that lack either DegP or its regulator CpxRA restores expression and colistin resistance. MCR-1 production in Escherichia coli imposes growth restriction in strains lacking either DegP or CpxRA, effects that are reversed by transactive expression of DegP. Excipient allosteric activation of the DegP protease specifically inhibits growth of isolates carrying mcr-1 plasmids. As CpxRA directly senses acidification, growth of strains at moderately low pH dramatically increases both MCR-1-dependent phosphoethanolamine (PEA) modification of lipid A and colistin resistance levels. Strains expressing MCR-1 are also more resistant to antimicrobial peptides and bile acids. Thus, a single residue external to its active site induces ESR activity to confer resilience in MCR-1-expressing strains to commonly encountered environmental stimuli, such as changes in acidity and antimicrobial peptides. Targeted activation of the nonessential protease DegP can lead to the elimination of transferable colistin resistance in Gram-negative bacteria. IMPORTANCE The global presence of transferable mcr genes in a wide range of Gram-negative bacteria from clinical, veterinary, food, and aquaculture environments is disconcerting. Its success as a transmissible resistance factor remains enigmatic, because its expression imposes fitness costs and imparts only moderate levels of colistin resistance. Here, we show that MCR-1 triggers regulatory components of the envelope stress response, a system that senses fluctuations in nutrient availability and environmental changes, to promote bacterial survival in low pH environments. We identify a single residue within a highly conserved structural element of mcr-1 distal to its catalytic site that modulates resistance activity and triggers the ESR. Using mutational analysis, quantitative lipid A profiling and biochemical assays, we determined that growth in low pH environments dramatically increases colistin resistance levels and promotes resistance to bile acids and antimicrobial peptides. We exploited these findings to develop a targeted approach that eliminates mcr-1 and its plasmid carriers.


Subject(s)
Colistin , Escherichia coli Proteins , Colistin/pharmacology , Lipid A , Anti-Bacterial Agents/pharmacology , Escherichia coli , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Plasmids , Peptide Hydrolases/pharmacology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests
9.
J Glob Antimicrob Resist ; 33: 231-237, 2023 06.
Article in English | MEDLINE | ID: mdl-36948496

ABSTRACT

OBJECTIVES: Antimicrobial-resistant bacteria of the order Enterobacterales are emerging threats to global public and animal health, leading to morbidity and mortality. The emergence of antimicrobial-resistant, livestock-associated pathogens is a great public health concern. The genera Enterobacter and Lelliottia are ubiquitous, facultatively anaerobic, motile, non-spore-forming, rod-shaped Gram-negative bacteria belonging to the Enterobacteriaceae family and include pathogens of public health importance. Here, we report the first draft genome sequences of a rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 in Africa. METHODS: The bacteria were isolated from environmental wastewater samples. Bacteria were cultured on nutrient agar, and the pure cultures were subjected to whole-genome sequencing. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were trimmed and subjected to de novo assembly. The assembled contigs were analysed for virulence genes, antimicrobial resistance genes, and extra-chromosomal plasmids, and multilocus sequence typing was performed. To compare the sequenced strains with other, previously sequenced E. kobei and L. nimipressuralis strains, available raw read sequences were downloaded, and all sequence files were treated identically to generate core genome bootstrapped maximum likelihood phylogenetic trees. RESULTS: Whole-genome sequencing analyses identified strain MEZLN61 as L. nimipressuralis and strains MEZEK193 and MEZEK194 as E. kobei. MEZEK193 and MEZEK194 carried genes encoding resistance to fosfomycin (fosA), beta-lactam antibiotics (blaACT-9), and colistin (mcr-9). Additionally, MEZEK193 harboured nine different virulence genes, while MEZEK194 harboured eleven different virulence genes. The phenotypic analysis showed that L. nimipressuralis strain MEZLN61 was susceptible to colistin (2 µg/mL), while E. kobei MEZEK193 (64 µg/mL) and MEZEK194 (32 µg/mL) were resistant to colistin. CONCLUSION: The genome sequences of strains L. nimipressuralis MEZLN6, E. kobei MEZEK193, and E. kobei MEZEK194 will serve as a reference point for molecular epidemiological studies of L. nimipressuralis and E. kobei in Africa. In addition, this study provides an in-depth analysis of the genomic structure and offers important information that helps clarify the pathogenesis and antimicrobial resistance of L. nimipressuralis and E. kobei. The detection of mcr-9, which is associated with very low-level colistin resistance in Enterobacter species, is alarming and may indicate the undetected dissemination of mcr genes in bacteria of the order Enterobacterales. Continuous monitoring and surveillance of the prevalence of mcr genes and their associated phenotypic changes in clinically important pathogens and environmentally associated bacteria is necessary to control and prevent the spread of colistin resistance.


Subject(s)
Anti-Bacterial Agents , Colistin , Animals , Anti-Bacterial Agents/pharmacology , Wastewater , Escherichia coli/genetics , South Africa , Phylogeny , Drug Resistance, Bacterial/genetics , Enterobacteriaceae/genetics , Enterobacter
10.
Nat Commun ; 14(1): 140, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627272

ABSTRACT

Species within the Enterobacter cloacae complex (ECC) include globally important nosocomial pathogens. A three-year study of ECC in Germany identified Enterobacter xiangfangensis as the most common species (65.5%) detected, a result replicated by examining a global pool of 3246 isolates. Antibiotic resistance profiling revealed widespread resistance and heteroresistance to the antibiotic colistin and detected the mobile colistin resistance (mcr)-9 gene in 19.2% of all isolates. We show that resistance and heteroresistance properties depend on the chromosomal arnBCADTEF gene cassette whose products catalyze transfer of L-Ara4N to lipid A. Using comparative genomics, mutational analysis, and quantitative lipid A profiling we demonstrate that intrinsic lipid A modification levels are genospecies-dependent and governed by allelic variations in phoPQ and mgrB, that encode a two-component sensor-activator system and specific inhibitor peptide. By generating phoPQ chimeras and combining them with mgrB alleles, we show that interactions at the pH-sensing interface of the sensory histidine kinase phoQ dictate arnBCADTEF expression levels. To minimize therapeutic failures, we developed an assay that accurately detects colistin resistance levels for any ECC isolate.


Subject(s)
Colistin , Lipid A , Colistin/pharmacology , Colistin/therapeutic use , Lipid A/chemistry , Lipid A/pharmacology , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterobacter/genetics , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests
11.
Clin Microbiol Infect ; 29(4): 515-522, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36481293

ABSTRACT

OBJECTIVES: Assessment of vancomycin-resistant Enterococcus faecium (VREfm) prevalence upon hospital admission and analysis of risk factors for colonization. METHODS: From 2014 to 2018, patients were recruited within 72 hours of admission to seven participating German university hospitals, screened for VREfm and questioned for potential risk factors (prior multidrug-resistant organism detection, current/prior antibiotic consumption, prior hospital, rehabilitation or long-term care facility stay, international travel, animal contact and proton pump inhibitor [PPI]/antacid therapy). Genotype analysis was done using cgMLST typing. Multivariable analysis was performed. RESULTS: In 5 years, 265 of 17,349 included patients were colonized with VREfm (a prevalence of 1.5%). Risk factors for VREfm colonization were age (adjusted OR [aOR], 1.02; 95% CI, 1.01-1.03), previous (aOR, 2.71; 95% CI, 1.87-3.92) or current (aOR, 2.91; 95% CI, 2.60-3.24) antibiotic treatment, prior multidrug-resistant organism detection (aOR, 2.83; 95% CI, 2.21-3.63), prior stay in a long-term care facility (aOR, 2.19; 95% CI, 1.62-2.97), prior stay in a hospital (aOR, 2.91; 95% CI, 2.05-4.13) and prior consumption of PPI/antacids (aOR, 1.29; 95% CI, 1.18-1.41). Overall, the VREfm admission prevalence increased by 33% each year and 2% each year of life. 250 of 265 isolates were genotyped and 141 (53.2%) of the VREfm were the emerging ST117. Multivariable analysis showed that ST117 and non-ST117 VREfm colonized patients differed with respect to admission year and prior multidrug-resistant organism detection. DISCUSSION: Age, healthcare contacts and antibiotic and PPI/antacid consumption increase the individual risk of VREfm colonization. The VREfm admission prevalence increase in Germany is mainly driven by the emergence of ST117.


Subject(s)
Cross Infection , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Animals , Vancomycin/pharmacology , Hospitals, University , Cross-Sectional Studies , Prevalence , Antacids , Anti-Bacterial Agents/pharmacology , Risk Factors , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Cross Infection/epidemiology , Cross Infection/microbiology
12.
Antibiotics (Basel) ; 11(11)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36421255

ABSTRACT

Antimicrobial resistance (AMR) has become one of the serious global health problems, threatening the effective treatment of a growing number of infections. Machine learning and deep learning show great potential in rapid and accurate AMR predictions. However, a large number of samples for the training of these models is essential. In particular, for novel antibiotics, limited training samples and data imbalance hinder the models' generalization performance and overall accuracy. We propose a deep transfer learning model that can improve model performance for AMR prediction on small, imbalanced datasets. As our approach relies on transfer learning and secondary mutations, it is also applicable to novel antibiotics and emerging resistances in the future and enables quick diagnostics and personalized treatments.

13.
J Glob Antimicrob Resist ; 31: 292-294, 2022 12.
Article in English | MEDLINE | ID: mdl-36049732

ABSTRACT

OBJECTIVES: Cronobacter sakazakii is an emerging opportunistic foodborne pathogen that is frequently associated with life-threatening infections such as infantile septicemia, meningitis, and necrotizing enterocolitis. The emergence of antimicrobial-resistant, livestock-associated C. sakazakii is a great public health concern. Here, we report on the first draft genome sequence of C. sakazakii strain MEZCS99 sequence type 3 (ST3) isolated from feces from a healthy chicken in KwaZulu-Natal Province, South Africa. METHODS: The genomic DNA of C. sakazakii was sequenced using an Illumina MiSeq platform (Illumina Inc., San Diego, CA). Generated reads were trimmed and de novo assembled. The assembled contigs were analyzed for virulence and antimicrobial resistance genes, extra-chromosomal plasmids, and multilocus sequence type (MLST). To compare the sequenced strains to other previously sequenced C. sakazakii strains, available raw read sequences of C. sakazakii were downloaded and all sequence files were treated identically to generate a core genome phylogenetic tree. RESULTS: Intrinsic beta-lactam resistance gene blaCSA-1 was detected in MEZCS99. No colistin or other antibiotic resistance genes were detected. MEZCS99 belonged to ST3 and harbored an extra-chromosomal plasmid (IncFIB (pCTU3)). The genome of MEZCS99 strain showed two CRISPR/Cas cluster arrays of I-E (n = 1) and I-F (n = 1) type. CONCLUSION: The genome sequence of strain MEZCS99 will serve as a reference point for molecular epidemiological studies of livestock-associated C. sakazakii in Africa. In addition, this study allows in-depth analysis of the genomic structure and will provide valuable information that helps understand the pathogenesis and antimicrobial resistance of livestock-associated C. sakazakii.


Subject(s)
Cronobacter sakazakii , Animals , Cronobacter sakazakii/genetics , Chickens , Phylogeny , South Africa , Multilocus Sequence Typing
14.
J Glob Antimicrob Resist ; 31: 286-291, 2022 12.
Article in English | MEDLINE | ID: mdl-36058511

ABSTRACT

OBJECTIVES: Acinetobacter baumannii is a significant opportunistic pathogen causing nosocomial infections. Infections caused by A. baumannii are often difficult to treat because this bacterium is often multidrug-resistant and shows high environmental adaptability. Here, we report on the analysis of three A. baumannii strains isolated from hospital effluents in South Africa. METHODS: Strains were isolated on Leeds Acinetobacter agar and were identified using VITEK®2 platform. Antibiotic susceptibility testing was performed using the Kirby-Bauer Disk diffusion method. Whole-genome sequencing was performed. The assembled contigs were annotated. Multilocus sequence type, antimicrobial resistance, and virulence genes were identified. RESULTS: The strains showed two multilocus sequence types, ST231 (FA34) and ST1552 (PL448, FG116). Based on their antibiotic susceptibility profiles, PL448 and FG116 were classified as extensively drug-resistant and FA34 as pandrug-resistant. FA34 harbored mutations in LpxA, LpxC, and PmrB, conferring resistance to colistin, but not mcr genes. All three strains encoded virulence genes for immune evasion (capsule, lipopolysaccharide [LPS]), iron uptake, and biofilm formation. FA34 was related to human strains from South Africa; PL448 and FG116 were related to a strain isolated in the United States from a human wound. CONCLUSIONS: The detection of extensively drug- and pandrug-resistant A. baumannii strains in hospital effluents is of particular concern. It indicates that wastewater might play a role in the spread of these bacteria. Our data provide insight into the molecular epidemiology, resistance, pathogenicity, and distribution of A. baumannii in South Africa.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Acinetobacter baumannii/genetics , Acinetobacter Infections/microbiology , Wastewater , South Africa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Hospitals
15.
Int J Mol Sci ; 23(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36077146

ABSTRACT

The EPIC consortium brings together experts from a wide range of fields that include clinical, molecular and basic microbiology, infectious diseases, computational biology and chemistry, drug discovery and design, bioinformatics, biochemistry, biophysics, pharmacology, toxicology, veterinary sciences, environmental sciences, and epidemiology. The main question to be answered by the EPIC alliance is the following: "What is the best approach for data mining on carbapenemase inhibitors and how to translate this data into experiments?" From this forum, we propose that the scientific community think up new strategies to be followed for the discovery of new carbapenemase inhibitors, so that this process is efficient and capable of providing results in the shortest possible time and within acceptable time and economic costs.


Subject(s)
Computational Biology , beta-Lactamases , Bacterial Proteins , Computational Biology/methods , Computer Simulation
16.
Front Microbiol ; 13: 896296, 2022.
Article in English | MEDLINE | ID: mdl-35865933

ABSTRACT

Escherichia coli belonging to the enterohemorrhagic (EHEC), Shiga toxin-producing (STEC) and atypical enteropathogenic (aEPEC) pathotypes are significant foodborne zoonotic pathogens posing serious health risks, with healthy cattle as their main reservoir. A representative sampling of Hungarian cattle farms during 2017-2018 yielded a prevalence of 6.5 and 5.8% for STEC and aEPEC out of 309 samples. The draft genomes of twelve STEC (of them 9 EHEC) and four aEPEC of bovine origin were determined. For comparative purposes, we also included 3 EHEC and 2 aEPEC strains of human origin, as well four commensal isolates and one extraintestinal pathogenic E. coli (ExPEC) obtained from animals in a final set of 26 strains for a WGS-based analysis. Apart from key virulence genes, these isolates harbored several additional virulence genes with arrays characteristic for the site of isolation. The most frequent insertion site of Shiga toxin (stx) encoding prophages was yehV for the Stx1 prophage and wrbA and sbcB for Stx2. For O157:H7 strains, the locus of enterocyte effacement pathogenicity island was present at the selC site, with integration at pheV for other serotypes, and pheU in the case of O26:H11 strains. Several LEE-negative STEC and aEPEC as well as commensal isolates carried additional prophages, with an average of ten prophage regions per isolate. Comparative phylogenomic analysis showed no clear separation between bovine and human lineages among the isolates characterized in the current study. Similarities in virulence gene arrays and close phylogenetic relations of bovine and human isolates underline the zoonotic potential of bovine aEPEC and STEC and emphasize the need for frequent monitoring of these pathogens in livestock.

17.
PLoS One ; 17(7): e0271317, 2022.
Article in English | MEDLINE | ID: mdl-35839265

ABSTRACT

Extended-spectrum beta-lactamase (ESBL)-producing Escherichia (E.) coli have been widely described as the cause of treatment failures in humans around the world. The origin of human infections with these microorganisms is discussed controversially and in most cases hard to identify. Since they pose a relevant risk to human health, it becomes crucial to understand their sources and the transmission pathways. In this study, we analyzed data from different studies in Germany and grouped ESBL-producing E. coli from different sources and human cases into subtypes based on their phenotypic and genotypic characteristics (ESBL-genotype, E. coli phylogenetic group and phenotypic antimicrobial resistance pattern). Then, a source attribution model was developed in order to attribute the human cases to the considered sources. The sources were from different animal species (cattle, pig, chicken, dog and horse) and also from patients with nosocomial infections. The human isolates were gathered from community cases which showed to be colonized with ESBL-producing E. coli. We used the attribution model first with only the animal sources (Approach A) and then additionally with the nosocomial infections (Approach B). We observed that all sources contributed to the human cases, nevertheless, isolates from nosocomial infections were more related to those from human cases than any of the other sources. We identified subtypes that were only detected in the considered animal species and others that were observed only in the human population. Some subtypes from the human cases could not be allocated to any of the sources from this study and were attributed to an unknown source. Our study emphasizes the importance of human-to-human transmission of ESBL-producing E. coli and the different role that pets, livestock and healthcare facilities may play in the transmission of these resistant bacteria. The developed source attribution model can be further used to monitor future trends. A One Health approach is necessary to develop source attribution models further to integrate also wildlife, environmental as well as food sources in addition to human and animal data.


Subject(s)
Cross Infection , Escherichia coli Infections , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Dogs , Escherichia coli , Escherichia coli Infections/microbiology , Germany/epidemiology , Horses , Humans , Phylogeny , Swine , beta-Lactamases/metabolism
18.
Arch Microbiol ; 204(4): 231, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35355138

ABSTRACT

Shiga-toxin-producing Escherichia coli (STEC) strains of the serogroup O157 are foodborne pathogens associated with severe clinical disease. As antibiotics are counter-indicated for treatment of these infections, they represent prime candidates for targeted application of bacteriophages to reduce infection burden. In this study, we characterised lytic bacteriophages representing three phage genera for activity against E. coli O157 strains. The phages vb_EcoM_bov9_1 (Tequatrovirus), vb_EcoM_bov11CS3 (Vequintavirus), and vb_EcoS_bov25_1D (Dhillonvirus) showed effective lysis of enterohaemorrhagic E. coli EHEC O157:H7 strains, while also exhibiting activity against other strains of the O157 serogroup, as well as of the 'big six' (STEC) serogroups, albeit with lower efficiency. They had a burst size of 293, 127 and 18 per cell and a latent period of 35, 5 and 30 min, respectively. In situ challenge experiments using the O157 Sakai strain on minced beef showed a reduction by 2-3-fold when treated with phages at a 0.1 MOI (multiplicity of infection), and approximately 1 log reduction when exposed to MOI values of 10 and 100. A cocktail of the phages, applied at 10 × and 100 × MOI showed 2 to 3 log reduction when samples were treated at room temperature, and all treatments at 37 °C with 100 × MOI resulted in a 5 to 6 log reduction in cell count. Our results indicate that the phages vb_EcoM_bov9_1 and vb_EcoM_bov11CS3, which have higher burst sizes, are promising candidates for biocontrol experiments aimed at the eradication of E. coli O157 strains in animals or foodstuff.


Subject(s)
Bacteriophages , Escherichia coli O157 , Shiga-Toxigenic Escherichia coli , Siphoviridae , Animals , Cattle , Myoviridae
19.
Comput Struct Biotechnol J ; 20: 1264-1270, 2022.
Article in English | MEDLINE | ID: mdl-35317240

ABSTRACT

Antimicrobial resistance (AMR) is a global health and development threat. In particular, multi-drug resistance (MDR) is increasingly common in pathogenic bacteria. It has become a serious problem to public health, as MDR can lead to the failure of treatment of patients. MDR is typically the result of mutations and the accumulation of multiple resistance genes within a single cell. Machine learning methods have a wide range of applications for AMR prediction. However, these approaches typically focus on single drug resistance prediction and do not incorporate information on accumulating antimicrobial resistance traits over time. Thus, identifying multi-drug resistance simultaneously and rapidly remains an open challenge. In our study, we could demonstrate that multi-label classification (MLC) methods can be used to model multi-drug resistance in pathogens. Importantly, we found the ensemble of classifier chains (ECC) model achieves accurate MDR prediction and outperforms other MLC methods. Thus, our study extends the available tools for MDR prediction and paves the way for improving diagnostics of infections in patients. Furthermore, the MLC methods we introduced here would contribute to reducing the threat of antimicrobial resistance and related deaths in the future by improving the speed and accuracy of the identification of pathogens and resistance.

20.
J Glob Antimicrob Resist ; 29: 150-154, 2022 06.
Article in English | MEDLINE | ID: mdl-35257970

ABSTRACT

OBJECTIVES: The resistome, virulome, mobilome and phylogenetic relationship of the Acinetobacter baumannii isolate FG121 depicting the multilocus sequence type (ST) 231 isolated from hospital effluent water in South Africa was determined using whole-genome sequence analysis. METHOD: A. baumannii FG121 was isolated on Leed Acinetobacter Medium (LAM) agar and the bacterial isolate was identified using the VITEK®2 platform. Antibiotic susceptibility testing was performed using Kirby-Bauer Disk diffusion method. A whole genome sequencing library was constructed from DNA extracted from the isolate using the Illumina Nextera XT library preparation kit and was sequenced using the Illumina NextSeq500 platform. Generated reads were de novo assembled using SpAdes v.3.9. The assembled contigs were annotated, and multilocus sequence type, antimicrobial resistance, and virulence genes were identified. RESULTS: The resistome was consistent with the resistance phenotype of the isolate with resistance determinants for beta-lactams, aminoglycosides, and tetracycline (blaADC-25, blaOXA-23, blaOXA-51, blaNDM-1, aph[3']-VIa and tet[B]). Global phylogenomic analysis using BacWGSTdb revealed that the isolate belonged to the multilocus sequence type ST-231, similar to previously reported isolates from South Africa, the United States, and related to the invasive KR3831 isolate identified from Oman in 2012, suggesting the isolate might be imported from abroad. Virulome analysis predicted both virulence and biofilm-determinants of A. baumannii, which may help to establish infections in adverse conditions. CONCLUSION: This is the first report on a carbapenemase-encoding A. baumannii ST-231 isolated from hospital effluent water. Our data will offer insight into the global phylogenetic, pathogenicity and distribution of A. baumannii in South Africa.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Wastewater , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Drug Resistance, Multiple, Bacterial/genetics , Hospitals , Humans , Phylogeny , South Africa , Wastewater/microbiology , beta-Lactamases
SELECTION OF CITATIONS
SEARCH DETAIL
...