Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 652
Filter
1.
Arch Dermatol Res ; 316(7): 447, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958761

ABSTRACT

Malignant melanoma presents a formidable challenge due to its aggressive metastatic behavior and limited response to current treatments. To address this, our study delves into the impact of anlotinib on angiogenesis and vasculogenic mimicry using malignant melanoma cells and human umbilical vein endothelial cells. Evaluating tubular structure formation, cell proliferation, migration, invasion, and key signaling molecules in angiogenesis, we demonstrated that anlotinib exerts a dose-dependent inhibition on tubular structures and effectively suppresses cell growth and invasion in both cell types. Furthermore, in a mouse xenograft model, anlotinib treatment resulted in reduced tumor growth and vascular density. Notably, the downregulation of VEGFR-2, FGFR-1, PDGFR-ß, and PI3K underscored the multitargeted antitumor activity of anlotinib. Our findings emphasize the therapeutic potential of anlotinib in targeting angiogenesis and vasculogenic mimicry, contributing to the development of novel strategies for combating malignant melanoma.


Subject(s)
Cell Movement , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Indoles , Melanoma , Neovascularization, Pathologic , Quinolines , Vascular Endothelial Growth Factor Receptor-2 , Xenograft Model Antitumor Assays , Quinolines/pharmacology , Quinolines/therapeutic use , Quinolines/administration & dosage , Humans , Melanoma/drug therapy , Melanoma/pathology , Animals , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Indoles/pharmacology , Indoles/therapeutic use , Mice , Cell Proliferation/drug effects , Cell Line, Tumor , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Cell Movement/drug effects , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/therapeutic use , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Mice, Nude , Angiogenesis
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 862-865, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-38946374

ABSTRACT

OBJECTIVE: To explore the serological characteristics and molecular mechanism underlying an individual with A3 phenotype. METHODS: A 27-year-old ethnic Han Chinese woman presented at the Fourth Affiliated Hospital of China Medical University on May 12, 2022 was selected as the study subject. ABO blood type was determined with standard serological techniques. The ABO gene was subjected to direct sequencing of PCR products. Exons 6 and 7 of the ABO gene were sequenced using specific primers to determine the haplotypes. Bioinformatic software was used to analyze the structure of the mutant protein. RESULTS: Serological typing of the ABO blood group has suggested a rare A3 phenotype. The proband was found to harbor heterozygous c.261delG, c.467C>T and c.745C>T variants by direct sequencing. Single strand sequencing revealed that she has harbored ABO*A3.07 and ABO*O.01.01 alleles. The ABO*A3.07 allele has contained a c.745C>T (p.R249W) variant on the background of an ABO*A1.02 allele. The p.R249W substitution was predicted to be probably damaging by the PolyPhen2 software. The free energy change (ΔΔG) value predicted it to have a destabilizing effect on the GTA protein. Meanwhile, modeling of the 3D structure has predicted that the p.R249W amino acid substitution may alter the hydrogen bond network of the GTA protein. CONCLUSION: The p.R249W substitution of the α-1,3-N-acetylgalactosaminyltransferase gene may reduce the antigen expression owing to a great destabilizing effect on the structure and function of the GTA protein.


Subject(s)
ABO Blood-Group System , Phenotype , Humans , Female , ABO Blood-Group System/genetics , Adult , Alleles , Glycosyltransferases/genetics , N-Acetylgalactosaminyltransferases/genetics , Asian People/genetics , Base Sequence
3.
Am J Med Sci ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944203

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is closely related to metabolic syndrome and remains a major global health burden. The increased prevalence of obesity and type 2 diabetes mellitus (T2DM) worldwide has contributed to the rising incidence of NAFLD. It is widely believed that atherosclerotic cardiovascular disease (ASCVD) is associated with NAFLD. In the past decade, the clinical implications of NAFLD have gone beyond liver-related morbidity and mortality, with a majority of patient deaths attributed to malignancy, coronary heart disease (CHD), and other cardiovascular (CVD) complications. To better define fatty liver disease associated with metabolic disorders, experts proposed a new term in 2020 - metabolic dysfunction associated with fatty liver disease (MAFLD). Along with this new designation, updated diagnostic criteria were introduced, resulting in some differentiation between NAFLD and MAFLD patient populations, although there is overlap. The aim of this review is to explore the relationship between MAFLD and ASCVD based on the new definitions and diagnostic criteria, while briefly discussing potential mechanisms underlying cardiovascular disease in patients with MAFLD.

4.
J Sep Sci ; 47(11): e2300915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847294

ABSTRACT

In this work, core-shell material with a special structure was designed and applied in solid-phase extraction (SPE) for non-steroidal anti-inflammatory drugs (NSAIDs) combined with high-performance liquid chromatography. Based on the advantages of core-shell ZIF-8@ZIF-67 (Zeolite imidazole ester framework materials [ZIFs]), effective derivatization treatment was carried out to partially vulcanize the original ZIFs, resulting in a special and new double-core-shell structural material CoS/ZIF-67/ZnS/ZIF-8 (ZIFs@ZnS@CoS) with porous surface and center hollow. The multiple forces caused by the rich chemical structure, the large specific surface area caused by the special pore structure, and the effective protection of the ZIFs core by sulfide shell make the designed material have higher extraction efficiency and longer service life, compared with ZIF-8@ZIF-67 and ZIF-8. At the same time, the established analytical method for non-steroidal drugs had a high recovery rate (98.93%-102.10%), low detection limit (0.11-0.27 µg/L), and wide linear range (1-200 µg/L) within a good correlation coefficient R2 (0.9978-0.9993). Satisfactory results were also obtained from the extraction of NSAIDs from the Yellow River water samples. These results indicate that the designed double-core-shell structure material can effectively exert its structural advantages and become a promising extraction material.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Solid Phase Extraction , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/analysis , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid , Surface Properties , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/analysis , Particle Size , Metal-Organic Frameworks/chemistry , Molecular Structure , Porosity , Zeolites/chemistry , Adsorption , Imidazoles/chemistry
5.
Biochem Genet ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886317

ABSTRACT

Ferroptosis is a novel form of membrane-dependent cell death that differs from other cell death modalities such as necrosis, apoptosis, and autophagy. Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system primarily affecting brain and spinal cord neurons. Although the pathogenesis of these two conditions may seem unrelated, recent studies have indicated a connection between ferroptosis and multiple sclerosis. In fact, ferroptosis plays a significant role in the development of MS, as evidenced by the presence of elevated iron levels and iron metabolism abnormalities in the brains, spinal cords, and other neurons of MS patients. These abnormalities disrupt iron homeostasis within cells, leading to the occurrence of ferroptosis. However, there is currently a lack of research on the diagnostic value of ferroptosis-related genes in multiple sclerosis. In this study, we employed bioinformatics methods to identify ferroptosis-related genes (ATM, GSK3B, HMGCR, KLF2, MAPK1, NFE2L1, NRAS, PCBP1, PIK3CA, RPL8, VDAC3) associated with the diagnosis of multiple sclerosis and constructed a diagnostic model. The results demonstrated that the diagnostic model accurately identified the patients' condition. Subsequently, subgroup analysis was performed based on the expression levels of ferroptosis-related genes, dividing patients into high and low expression groups. The results showed differences in immune function and immune cell infiltration between the two groups. Our study not only confirms the correlation between ferroptosis and multiple sclerosis but also demonstrates the diagnostic value of ferroptosis-related genes in the disease. This provides guidance for clinical practice and direction for further mechanistic research.

6.
Pharmacotherapy ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899757

ABSTRACT

BACKGROUND: To compare the effects of proton pump inhibitor (PPI) and histamine-2 receptor antagonist (H2RA) use on the occurrence of acute kidney injury (AKI) in septic patients at high risk for developing stress ulcers. METHODS: Using the Medical Information Mart for Intensive Care IV version 2.2 database, septic patients with high-risk factors for stress ulcers (i.e., shock, coagulopathy, invasive mechanical ventilation, or chronic liver diseases) were included. Exposures included PPIs and H2RAs within 24 h of intensive care unit (ICU) admission or prior to ICU admission. The primary end point was severe sepsis-associated AKI as defined by the Kidney Disease Improving Global Outcomes criteria stage 3 (KDIGO-3). Propensity score matching (PSM) was performed to balance baseline characteristics. Multivariable Cox proportional hazards regression was used to estimate the effect size. RESULTS: 4731 PPI users and 4903 H2RA users were included. After PSM, there were 1785 pairs exposed to PPIs and H2RAs. In the PSM cohort, the cumulative incident KDIGO-3 rate was higher in the PPI group than in the H2RA group (log-rank test, p = 0.009). Regression analyses showed that PPI exposure [adjusted hazard ratio 1.32, 95% confidence interval (CI) 1.11-1.58, p = 0.002] was associated with incident KDIGO-3 compared with H2RA use. This association remained consistent in sensitivity analyses. Additionally, the PPI group had a higher need for kidney replacement therapy compared with the H2RA group (3.6% vs. 2.1%, P = 0.012). CONCLUSIONS: Among septic patients at high risk for developing stress ulcers, PPI exposure was associated with incident KDIGO-3 AKI compared with H2RA use.

7.
Acta Pharm Sin B ; 14(6): 2748-2760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828155

ABSTRACT

Circular RNAs (circRNAs) are ideal biomarkers of oral squamous cell carcinoma (OSCC) because of their highly stable closed-loop structure, and they can act as microRNA (miRNA) sponges to regulate OSCC progression. By analyzing clinical samples, we identified circCPNE1, a dysregulated circRNA in OSCC, and its expression level was negatively correlated with the clinical stage of OSCC patients. Gain-of-function assays revealed the tumor-suppressive effect of circCPNE1, which was then identified as a miR-330-3p sponge. MiR-330-3p was recognized as a tumor promoter in multiple studies, consistent with our finding that it could promote the proliferation, migration, and invasion of OSCC cells. These results indicated that selective inhibition of miR-330-3p could be an effective strategy to inhibit OSCC progression. Therefore, we designed cationic polylysine-cisplatin prodrugs to deliver antagomiR-330-3p (a miRNA inhibitory analog) via electrostatic interactions to form PP@miR nanoparticles (NPs). Paratumoral administration results revealed that PP@miR NPs effectively inhibited subcutaneous tumor progression and achieved partial tumor elimination (2/5), which confirmed the critical role of miR-330-3p in OSCC development. These findings provide a new perspective for the development of OSCC treatments.

9.
Fish Shellfish Immunol ; 151: 109680, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38849108

ABSTRACT

This study investigated the effects of Cinnamomum osmophloeum leaf hot-water extract (CLWE) on nonspecific immune responses and resistance to Vibrio parahaemolyticus in white shrimp (Penaeus vannamei). Firstly, a cell viability assay demonstrated that the CLWE is safe to white shrimp heamocytes in the concentration of 0-500 mg L-1. Haemocytes incubated in vitro with 10 and 50 mg L-1 of CLWE showed significantly higher response in superoxide anion production, PO activity, and phagocytic activity. In the in vivo trials, white shrimp were fed with 0, 0.5, 1, 5, and 10 g kg-1 CLWE supplemented feeds (designated as CLWE 0, CLWE 0.5, CLWE 1, CLWE 5, and CLWE 10, respectively) over a period of 28 days. In vivo experiments demonstrated that CLWE 0.5 feeding group resulted in the highest total haemocyte count, superoxide anion production, phenoloxidase activity, and phagocytic activity. Moreover, CLWE 0.5 supplemented feed significantly upregulated the clotting system, antimicrobial peptides, pattern recognition receptors, pattern recognition proteins, and antioxidant defences in white shrimp. Furthermore, the shrimp were infected with V. parahaemolyticus injections after 14 days of feeding as challenge test. Based on the challenge test result, both CLWE 0.5 and CLWE 5 demonstrated a strong resistance to V. parahaemolyticus. These two dosages effectively reduced the number of nonviable cells and activated different haemocyte subpopulations. These findings indicated that treatment with CLWE 0.5 could promote nonspecific immune responses, immune-related gene expression, and resistance to V. parahaemolyticus in white shrimp.

10.
Gene ; 927: 148671, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866260

ABSTRACT

The Batagur kachuga (B. kachuga), commonly known as the Red-crowned roofed turtle, is a critically endangered species native to India and its neighboring countries like Bangladesh, and Nepal. The present study is the first report of the complete mitochondrial genome of B. kachuga (16,517 bp) construed via the next-generation sequencing (NGS) approach from eggshell DNA. There are 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), 13 protein-coding genes (PCGs), and one putative control region (CR/D-loop) in the mitogenome. The CR region from the current study reveals conserved TAS, CD, and CSB domains and two AT-rich tandem repeat regions. Most genes are encoded in the heavy strand except the NADH dehydrogenase subunit 6 (ND6) gene and seven tRNA genes. Most PCGs start with the initiation codon ATG, except the COI (Cytochrome Oxidase Subunit-I) gene, which starts with the GTG codon. The present investigation also predicts the distinctive cloverleaf structures of tRNAs except for tRNA-Ser1 and tRNA-Ser-2, which lack a DHU arm. The comparative analysis of Ka/Ks with other 33 species from Order Testudines, in relation to B. kachuga, revealed negative selection in most PCGs, indicating a process of preservation and purification that aids in eliminating undesirable or detrimental substitutes. Phylogenetic analysis of this species has been analysed using the complete mitogenome of 33 turtle species. The maximum likelihood phylogenetic tree strongly supports each family in different clades and also reveals a close relationship between the Pangashura and Batagur genera. Our study suggests the generation of genome-wide molecular data, in terms of mitogenomes, SNPs, and SSRs, is needed to improve the understanding of this species and their phylogenetics and evolutionary relationships, which will help to improve the conservation efforts of this species.

11.
Article in English | MEDLINE | ID: mdl-38829385

ABSTRACT

Garlic exhibits hypolipidemic, hypoglycemic, and cardiovascular benefits. The inconsistent results of garlic preparations on adipogenesis have caused more confusion in the public and academia. The compounds responsible for the anti-adipogenesis effect of garlic remain unknown. The present study aimed to verify the real anti-adipogenesis and anti-obesity component in garlic and explored its possible effects in metabolic syndrome. We verified the real anti-adipogenesis and anti-obesity components of garlic in 3T3-L1 preadipocytes and a 10-week-high fat diet (HFD)-induced obese mice. In vitro, two water-soluble and four typical lipid-soluble compounds of garlic were tested for their anti-adipogenesis. Then, the water-soluble compound, alliin, and two processing methods produced garlic oils, were evaluated in vivo study. Mice received oral administration of alliin (25 mg/kg) and garlic oils (15 mg/kg) daily for 8 weeks. Serum lipids, parameters of obesity, and indicators involved in regulating glycolipid metabolism were examined. Our findings confirmed that both water-soluble and lipid-soluble organosulfur compounds of garlic contributed to garlic's anti-adipogenesis effect, in which water-soluble sulfides, especially alliin, exhibited greater potency. Alliin possessed potent effects of anti-obesity and improvement in glucose and lipid metabolism in HFD-induced obese mice. Alliin mediated these effects partly attributed to its modulation of enzymatic activities within glycolipid metabolism and activating PPARγ signaling pathway. In contrast to odorous lipid-soluble sulfides, alliin is odorless, stable, and safe, and is an ideal nutraceutical or even medicinal candidates for the treatment of metabolic diseases. Alliin could be used to standardize the quality of garlic products.

12.
Animals (Basel) ; 14(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38929411

ABSTRACT

Extracellular vesicles (EVs) are functional substances secreted by microbes and host cells, and it has been discovered that they participate in the interactions between different microorganisms. Our recent findings indicate that Limosilactobacillus reuteri-derived EVs have the potential to improve the intestinal microbiota of Oplegnathus fasciatus fish and inhibit pathogenic bacteria. Previous research has reported that the host intestinal cells play a regulatory role in the intestinal microbiota. This suggested that to investigate the mechanisms through which L. reuteri-derived EVs regulate the intestinal microbiota, a system that excludes interference from host intestinal cells should be established. In this study, an in vitro cultured intestinal bacteria system, without host factors, was used to simulate the intestinal microbiota of O. fasciatus fish. After adding L. reuteri-derived EVs to the system, the changes in the microbiota were analyzed. The results showed that L. reuteri-derived EVs effectively reduced the abundance of Vibrio spp. In the results of the in vitro experiments, it was also observed that L. reuteri-derived EVs have the ability to inhibit Vibrio alginolyticus. We further sequenced the small RNA contained in L. reuteri-derived EVs and found that these small RNAs can interfere with genes (LysR, pirin, MIpA/OmpV, CatB, and aspartate-semialdehyde dehydrogenase) related to the growth of V. alginolyticus. Taken together, the results indicate that in the absence of host involvement, the small RNAs present in L. reuteri-derived EVs have the function of inhibiting pathogenic bacteria and exhibit the potential to regulate the intestinal microbiota.

13.
Comput Biol Med ; 176: 108620, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761500

ABSTRACT

Predicting three-dimensional (3D) protein structures has been challenging for decades. The emergence of AlphaFold2 (AF2), a deep learning-based machine learning method developed by DeepMind, became a game changer in the protein folding community. AF2 can predict a protein's three-dimensional structure with high confidence based on its amino acid sequence. Accurate prediction of protein structures can dramatically accelerate our understanding of biological mechanisms and provide a solid foundation for reliable drug design. Although AF2 breaks through the barriers in predicting protein structures, many rooms remain to be further studied. This review provides a brief historical overview of the development of protein structure prediction, covering template-based, template-free, and machine learning-based methods. In addition to reviewing the potential benefits (Pros) and considerations (Cons) of using AF2, this review summarizes the diverse applications, including protein structure predictions, dynamic changes, point mutation, integration of language model and experimental data, protein complex, and protein-peptide interaction. It underscores recent advancements in efficiency, reliability, and broad application of AF2. This comprehensive review offers valuable insights into the applications of AF2 and AF2-inspired AI methods in structural biology and its potential for clinically significant drug target discovery.


Subject(s)
Proteins , Proteins/chemistry , Proteins/metabolism , Proteins/genetics , Humans , Protein Folding , Deep Learning , Protein Conformation , Models, Molecular , Computational Biology/methods , Machine Learning
14.
Fish Shellfish Immunol ; 150: 109597, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697373

ABSTRACT

This study investigated the effects of fish protein hydrolysate derived from barramundi on growth performance, muscle composition, immune response, disease resistance, histology and gene expression in white shrimp (Penaeus vannamei). In vitro studies demonstrated FPH enhanced mRNA expressions of key immune-related genes and stimulated reactive oxygen species (ROS) production and phagocytic activity in shrimp hemocytes. To evaluate the effects of substituting fish meal with FPH in vivo, four isoproteic (43 %), isolipidic (6 %), and isoenergetic diets (489 kcal/100 g) were formulated with fish meal substitution levels of 0 % (control), 30 % (FPH30), 65 % (FPH65), and 100 % (FPH100). After 8-week feeding, the growth performance of FPH65 and FPH100 were significantly lower than that of control and FPH30 (p < 0.05). Similarly, the midgut histological examination revealed the wall thickness and villi height of FPH100 were significantly lower than those of control (p < 0.05). The shrimps were received the challenge of AHPND + Vibrio parahaemolyticus at week 4 and 8. All FPH-fed groups significantly enhanced resistance against Vibrio parahaemolyticus at week 4 (p < 0.05). However, this protective effect diminished after long-period feeding. No significant difference of survival rate was observed among all groups at week 8 (p > 0.05). The expressions of immune-related genes were analyzed at week 4 before and after challenge. In control group, V. parahaemolyticus significantly elevated SOD in hepatopancreas and Muc 19, trypsin, Midline-fas, and GPx in foregut (p < 0.05). Moreover, hepatopancreatic SOD of FPH65 and FPH100 were significantly higher than that of control before challenge (p < 0.05). Immune parameters were measured at week 8. Compared with control, the phagocytic index of FPH 30 was significantly higher (p < 0.05). However, dietary FPH did not alter ROS production, phenoloxidase activity, phagocytic rate, and total hemocyte count (p > 0.05). These findings suggest that FPH30 holds promise as a feed without adverse impacts on growth performance while enhancing the immunological response of white shrimp.


Subject(s)
Animal Feed , Diet , Immunity, Innate , Penaeidae , Protein Hydrolysates , Vibrio parahaemolyticus , Animals , Penaeidae/immunology , Penaeidae/growth & development , Vibrio parahaemolyticus/physiology , Animal Feed/analysis , Diet/veterinary , Protein Hydrolysates/chemistry , Protein Hydrolysates/administration & dosage , Disease Resistance , Dietary Supplements/analysis , Fish Proteins/genetics , Fish Proteins/immunology
15.
Heliyon ; 10(9): e30491, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756593

ABSTRACT

Aim: The aim of this study was to confirm the presence of the form deprivation myopia (FDM) guinea pig eye-gut axis and investigate the relationship between serum vasoactive intestinal peptide (VIP), lipopolysaccharides (LPS), specific gut microbiota and their metabolites. Method: 20 specific-pathogen-free (SPF) guinea pigs were divided into the FDM and the control(Con) group. Following model induction, serum levels of VIP and LPS were quantified. A combination of 16S ribosomal ribosomal Ribonucleic Acid (rRNA) gene sequencing, non-targeted metabolomics and bioinformatics analysis were employed to identify disparities in gut microbiota and metabolites between the two groups of guinea pigs. Result: Compared to the control group, FDM guinea pigs exhibited a significant trend towards myopia, along with significantly elevated concentrations of LPS and VIP (p < 0.0001). Furthermore, Ruminococcus_albus emerged as the predominant bacterial community enriched in FDM (p < 0.05), and demonstrated positive correlations with 10 metabolites, including l-Glutamic acid, Additionally, Ruminococcus_albus exhibited positive correlations with VIP and LPS levels (p < 0.05). Conclusion: The findings suggest that the Ruminococcus_Albus and glutamate metabolic pathways play a significant role in myopia development, leading to concurrent alterations in serum VIP and LPS levels in FDM guinea pigs. This underscores the potential of specific gut microbiota and their metabolites as pivotal biomarkers involved in the pathogenesis of myopia.

16.
Transl Lung Cancer Res ; 13(4): 861-874, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38736501

ABSTRACT

Background: The administration of immune checkpoint inhibitors (ICIs) in advanced non-small cell lung cancer (NSCLC) with oncogenic driver alterations other than epidermal growth factor receptor (EGFR) aroused a heated discussion. We thus aimed to evaluate ICI treatment in these patients in real-world routine clinical practice. Methods: A multicenter, retrospective study was conducted for NSCLC patients with at least one gene alteration (KRAS, HER2, BRAF, MET, RET, ALK, ROS1) receiving ICI monotherapy or combination treatment. The data regarding clinicopathologic characteristics, clinical efficacy, and safety were investigated. Results: A total of 216 patients were included, the median age was 60 years, 72.7% of patients were male, and 46.8% had a smoking history. The molecular alterations involved KRAS (n=95), HER2 (n=42), BRAF (n=22), MET (n=21), RET (n=14), ALK (n=14), and ROS1 (n=8); 56.5% of patients received immunotherapy in the first-line, and the rest 43.5% were treated as a second-line and above. For the entire cohort who received immunotherapy-based regimens in the first-line, the median progression-free survival (PFS) was 7.5 months and the median overall survival (OS) was 24.8 months. For the entire cohort who received immunotherapy-based regimens in the second-line and above, the median PFS was 4.7 months and median OS was 17.1 months. KRAS mutated NSCLC treated with immunotherapy-based regimens in the first-line setting had a median PFS and OS were 7.8 and 26.1 months, respectively. Moreover, the median PFS and OS of immunotherapy-based regimens for KRAS-mutant NSCLC that progressed after chemotherapy were 5.9 and 17.1 months. Programmed death ligand 1 (PD-L1) expression level was not consistently associated with response to immunotherapy across different gene alteration subsets. In the KRAS group, PD-L1 positivity [tumor proportion score (TPS) ≥1%] was associated with better PFS and OS according to the multivariate Cox analysis. No statistically significant association was found for smoking status, age, or gender with clinical efficacy in any gene group analyses. Conclusions: KRAS-mutant NSCLC could obtain clinical benefits from ICIs either for treatment-naive patients or those who have experienced progression after chemotherapy, and PD-L1 positive expression (TPS >1%) may be a potential positive predictor. For NSCLC with ALK, RET and ROS1 rearrangement, MET exon 14 skipping mutation, or BRAF V600E mutation, effectiveness of single or combined ICI therapy remains limited, therefore, targeted therapies should be considered prior to immunotherapy regimens. Future studies should address the investigation of better predictive biomarkers for immunotherapy response in oncogene-driven NSCLC.

17.
Chemistry ; 30(33): e202400629, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38594211

ABSTRACT

Herein, we synthesized two donor-acceptor (D-A) type small organic molecules with self-assembly properties, namely MPA-BT-BA and MPA-2FBT-BA, both containing a low acidity anchoring group, benzoic acid. After systematically investigation, it is found that, with the fluorination, the MPA-2FBT-BA demonstrates a lower highest occupied molecular orbital (HOMO) energy level, higher hole mobility, higher hydrophobicity and stronger interaction with the perovskite layer than that of MPA-BT-BA. As a result, the device based-on MPA-2FBT-BA displays a better crystallization and morphology of perovskite layer with larger grain size and less non-radiative recombination. Consequently, the device using MPA-2FBT-BA as hole transport material achieved the power conversion efficiency (PCE) of 20.32 % and remarkable stability. After being kept in an N2 glove box for 116 days, the unsealed PSCs' device retained 93 % of its initial PCE. Even exposed to air with a relative humidity range of 30±5 % for 43 days, its PCE remained above 91 % of its initial condition. This study highlights the vital importance of the fluorination strategy combined with a low acidity anchoring group in SAMs, offering a pathway to achieve efficient and stable PSCs.

18.
Ann Gen Psychiatry ; 23(1): 15, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664741

ABSTRACT

BACKGROUND: Patients with mood disorders usually require repeated and prolonged hospitalization, resulting in a heavy burden on healthcare resources. This study aims to identify variables associated with length of stay(LOS) of repeatedly hospitalized patients with mood disorders and to provide information for optimizing psychiatry management and healthcare resource allocation. METHODS: Electronic medical records (EMRs) of repeatedly hospitalized patients with mood disorders from January 2010 to December 2018 were collected and retrospectively analyzed. Chi-square and t-test were adopted to investigate the differences in characteristics between the two groups of short LOS and long LOS. Generalized estimating equation (GEE) was conducted to investigate potential factors influencing LOS. RESULTS: A total of 2,009 repeatedly hospitalized patients with mood disorders were enrolled, of which 797 (39.7%) had a long LOS and 1,212 (60.3%) had a short LOS. Adverse effects of treatment, continuous clinical manifestation, chronic onset type, suicide attempt, comorbidity and use of antidepressants were positively associated with long LOS among all repeatedly hospitalized patients with mood disorders (P < 0.050). For patients with depression, factors associated with long LOS consisted of age, monthly income, adverse effects of treatment, continuous clinical manifestation, suicide attempt and comorbidity (P < 0.050). Whereas, for patients with bipolar disorder (BD), adverse effects of treatment, four or more hospitalizations and use of antidepressants contributed to the long LOS (P < 0.050). Influencing factors of LOS also vary among patients with different effectiveness of treatment. CONCLUSION: The LOS in repeatedly hospitalized patients with mood disorders was influenced by multiple factors. There were discrepancies in the factors affecting LOS in patients with different diagnoses and effectiveness of treatment, and specific factors should be addressed when evaluating the LOS.

19.
Physiol Behav ; 281: 114552, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38614419

ABSTRACT

BACKGROUND: Recent research has highlighted the potential role of Helicobacter pylori in the pathogenesis of psychiatric disorders. This study aimed to evaluate the potential synergistic effects of an antidepressant drug and H. pylori eradication therapy in a mouse model. METHODS: Male C57BL/6 mice were divided into four groups: control, H. pylori infection, antidepressant treatment, and combined treatment. H. pylori infection was induced by oral gavage with a clinically relevant strain, and the antidepressant drug was administered via intraperitoneal injections. Behavioral tests including the forced swim test, sucrose preference test, and open field test were conducted to assess depressive-like behaviors and locomotor activity. RESULTS: The study demonstrated that H. pylori infection induced depressive-like behaviors in mice, as evidenced by increased immobility time in the forced swim test and reduced sucrose preference. Antidepressant treatment alone partially ameliorated these behavioral changes. Strikingly, the combined treatment of the antidepressant drug and H. pylori eradication therapy led to a significantly greater reduction in depressive-like behaviors compared to either treatment alone. Furthermore, the combined treatment group exhibited increased locomotor activity in the open field test, suggesting a potential improvement in overall psychomotor functioning. ELISA assays revealed alterations in inflammatory cytokines in the H. pylori-infected mice, which were partially attenuated by the combined treatment. CONCLUSION: The study provides novel evidence for the potential synergistic effects of an antidepressant drug and H. pylori eradication therapy in alleviating depressive-like behaviors in a mouse model.


Subject(s)
Amitriptyline , Cytokines , Disease Models, Animal , Helicobacter Infections , Helicobacter pylori , Mice, Inbred C57BL , Animals , Male , Helicobacter Infections/drug therapy , Amitriptyline/pharmacology , Amitriptyline/administration & dosage , Cytokines/metabolism , Helicobacter pylori/drug effects , Depression/drug therapy , Mice , Antidepressive Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Synergism , Motor Activity/drug effects , Swimming
20.
Animals (Basel) ; 14(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612294

ABSTRACT

The habitats of giant clams are undergoing environmental changes, and giant clam populations are declining. The present study was conducted to facilitate clam conservation. We conducted three 18-week trials to investigate the effects of nutrient, temperature, and salinity on the growth performance and survival rates (SRs) of juvenile Tridacna noae, adult Tridacna crocea, and subadult Tridacna derasa, respectively. Regarding nutrient sources, no significant differences were observed in shell length gain, specific growth rate, or SR between clams fed with Chaetoceros muelleri or commercial feed (hw nanotip) and those in a control group (juvenile phototrophs). Regarding temperature, clams cultivated at 27 °C exhibited significantly better growth performance and SR than did those cultivated at 19 °C or 31 °C (p < 0.05). By week 6, all clams in the 19 °C and 31 °C groups had died, indicating that suboptimal growth temperatures have severe adverse effects. Regarding salinity, clams cultivated at 34‱ exhibited significantly higher length gains and specific growth rates than did those cultivated at 20‱ or 25‱ (p < 0.05). SR was not significantly affected by salinity. Understanding how environmental factors affect giant clam populations may help researchers devise effective clam conservation strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...