Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmacol Res ; 207: 107336, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094987

ABSTRACT

G-Protein Pathway Suppressor 2 (GPS2) is an inhibitor of non-proteolytic K63 ubiquitination mediated by the E2 ubiquitin-conjugating enzyme Ubc13. Previous studies have associated GPS2-mediated restriction of ubiquitination with the regulation of insulin signaling, inflammatory responses and mitochondria-nuclear communication across different tissues and cell types. However, a detailed understanding of the targets of GPS2/Ubc13 activity is lacking. Here, we have dissected the GPS2-regulated K63 ubiquitome in mouse embryonic fibroblasts and human breast cancer cells, unexpectedly finding an enrichment for proteins involved in RNA binding and translation on the outer mitochondrial membrane. Validation of selected targets of GPS2-mediated regulation, including the RNA-binding protein PABPC1 and translation factors RPS1, RACK1 and eIF3M, revealed a mitochondrial-specific strategy for regulating the translation of nuclear-encoded mitochondrial proteins via non-proteolytic ubiquitination. Removal of GPS2-mediated inhibition, either via genetic deletion or stress-induced nuclear translocation, promotes the import-coupled translation of selected mRNAs leading to the increased expression of an adaptive antioxidant program. In light of GPS2 role in nuclear-mitochondria communication, these findings reveal an exquisite regulatory network for modulating mitochondrial gene expression through spatially coordinated transcription and translation.


Subject(s)
Mitochondria , Protein Biosynthesis , Ubiquitination , Animals , Humans , Mitochondria/metabolism , Mice , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Cell Line, Tumor , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Intracellular Signaling Peptides and Proteins
2.
Article in English | MEDLINE | ID: mdl-38018207

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is one of the malignant diseases of the reproductive system in elderly women. Aging-related genes (ARGs) were involved in tumor malignancy and cellular senescence, but the specifics of these mechanisms in OC remain unknown. METHODS: ARGs expression and survival data of OC patients were collected from TCGA and CPTAC databases. Subtype classification was used to identify the roles of hub ARGs in OC progression, including function enrichment, immune infiltration, and drug sensitivity. LASSO regression was utilized to confirm the prognosis significance for these hub ARGs. MTT, EdU, Transwell, and wounding healing analysis confirmed the effect of IGFBP5 on the proliferation and migration ability of OC cells. RESULTS: ARGs were ectopically expressed in OC tissues compared to normal ovary tissues. Three molecular subtypes were divided by ARGs for OC patients. There were significant differences in ferroptosis, m6A methylation, prognosis, immune infiltration, angiogenesis, differentiation level, and drug sensitivity among the three groups. LASSO regression indicated that 4 signatures, FOXO4, IGFBP5, OGG1 and TYMS, had important prognosis significance. Moreover, IGFBP5 was significantly correlated with immune infiltration. The hub ARG, IGFBP5, expression was significantly decreased in OC patients compared to normal women. IGFBP5 could also reduce the migration and proliferation ability of OC cells compared to vector and NC groups. CONCLUSION: IGFBP5 was correlated with OC prognosis and associated with OC migration and proliferation. This gene may serve as potential prognostic biomarkers and therapeutic targets for OC patients.

3.
J Oncol ; 2023: 6675265, 2023.
Article in English | MEDLINE | ID: mdl-37547633

ABSTRACT

Helicobacter pylori (H. pylori) infection affects cell survival pathways, including apoptosis and proliferation in host cells, and disruption of this balance is the key event in the development of H. pylori-induced gastric cancer (HPGC). H. pylori infection induces alterations in microRNAs expression that may be involved in GC development. Bioinformatic analysis showed that microRNA-21 (miR-21) is significantly upregulated in HPGC. Furthermore, quantitative proteomics and in silico prediction were employed to identify potential targets of miR-21. Following functional enrichment and clustered interaction network analyses, five candidates of miR-21 targets, PDCD4, ASPP2, DAXX, PIK3R1, and MAP3K1, were found across three functional clusters in association with cell death and survival, cellular movement, and cellular growth and proliferation. ASPP2 is inhibited by H. pylori-induced miR-21 overexpression. Moreover, ASPP2 levels are inversely correlated with miR-21 levels in HPGC tumor tissues. Thus, ASPP2 was identified as a miR-21 target in HPGC. Here, we observed that H. pylori-induced ASPP2 suppression enhances resistance to apoptosis in GC cells using apoptosis assays. Using protein interaction network and coimmunoprecipitation assay, we identified CHOP as a direct mediator of the ASPP2 proapoptotic activity in H. pylori-infected GC cells. Mechanistically, ASPP2 suppression promotes p300-mediated CHOP degradation, in turn inhibiting CHOP-mediated transcription of Noxa, Bak, and suppression of Bcl-2 to enact antiapoptosis in the GC cells after H. pylori infection. Clinicopathological analysis revealed correlations between decreased ASPP2 expression and higher HPGC risk and poor prognosis. In summary, the discovery of H. pylori-induced antiapoptosis via miR-21-mediated suppression of ASPP2/CHOP-mediated signaling provides a novel perspective for developing HPGC management and treatment.

4.
Pathol Res Pract ; 248: 154604, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37302276

ABSTRACT

Long noncoding RNAs (lncRNAs) refer to a class of RNAs greater than 200 nucleotides in length, most of which are considered unable to encode proteins, thus deemed to be junk genes formerly. But with emerging studies about lncRNAs coming out in recent years, it is much more clearly depicted that they can regulate gene expression at different levels, with various mechanisms, thus participating in diverse biological or pathological processes, including complicated tumor-associated pathways. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, the third leading cause of cancer-related mortality worldwide, which has been found to tightly associate with aberrant expression of a variety of lncRNAs regulating tumor proliferation, invasion, drug resistance, and so on, making it a potential novel tumor marker and therapeutic target. In this review, we highlight a few lncRNAs that are closely related to the occurrence and progression of HCC and try to cover their multifarious roles from different layers.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic/genetics
5.
Front Oncol ; 12: 1021558, 2022.
Article in English | MEDLINE | ID: mdl-36276071

ABSTRACT

Background: Ovarian serous cystadenocarcinoma (OSC), a common gynecologic tumor, is characterized by high mortality worldwide. Bromodomain (BRD)-containing proteins are a series of evolutionarily conserved proteins that bind to acetylated Lys residues of histones to regulate the transcription of multiple genes. The ectopic expression of BRDs is often observed in multiple cancer types, but the role of BRDs in OSC is still unclear. Methods: We performed the differential expression, GO enrichment, GSEA, immune infiltration, risk model, subtype classification, stemness feature, DNA alteration, and epigenetic modification analysis for these BRDs based on multiple public databases. Results: Most BRDs were dysregulated in OSC tissues compared to normal ovary tissues. These BRDs were positively correlated with each other in OSC patients. Gene alteration and epigenetic modification were significant for the dysregulation of BRDs in OSC patients. GO enrichment suggested that BRDs played key roles in histone acetylation, viral carcinogenesis, and transcription coactivator activity. Two molecular subtypes were classified by BRDs for OSC, which were significantly correlated with stemness features, m6A methylation, ferroptosis, drug sensitivity, and immune infiltration. The risk model constructed by LASSO regression with BRDs performed moderately well in prognostic predictions for OSC patients. Moreover, BRPF1 plays a significant role in these BRDs for the development and progression of OSC patients. Conclusion: BRDs are potential targets and biomarkers for OSC patients, especially BRPF1.

SELECTION OF CITATIONS
SEARCH DETAIL