Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Am J Cancer Res ; 14(7): 3545-3554, 2024.
Article in English | MEDLINE | ID: mdl-39113851

ABSTRACT

OBJECTIVE: To assess the predictive value of serum alkaline phosphatase (ALP), tumor-specific growth factor (TSGF), and macrophage migration inhibitory factor (MIF) for the efficacy of combined immunosuppressive and targeted therapy in osteosarcoma (OS). METHODS: We retrospectively analyzed clinical data from 161 OS patients treated at Xi'an Honghui Hospital from October 2020 to October 2022. Patients received 12 weeks of therapy with interferon-α (IFN-α) and bevacizumab. Serum levels of ALP, TSGF, and MIF were measured before and after treatment. Based on treatment efficacy, patients were categorized into effective and ineffective groups. Both univariate and logistic regression analyses were utilized to evaluate the influence of these biomarkers on therapy outcomes. RESULTS: A significant reduction in serum ALP, TSGF, and MIF levels post-treatment was found (all P<0.001). Higher pre-treatment levels of these biomarkers were associated with less effective outcomes (P<0.001). CONCLUSION: Pre-treatment levels of ALP, TSGF, and MIF are significant independent predictors of response to immunotargeted therapy in OS patients, suggesting their potential role in guiding treatment strategies.

2.
Front Med (Lausanne) ; 11: 1421439, 2024.
Article in English | MEDLINE | ID: mdl-39081694

ABSTRACT

We introduce a novel AI-driven approach to unsupervised fundus image registration utilizing our Generalized Polynomial Transformation (GPT) model. Through the GPT, we establish a foundational model capable of simulating diverse polynomial transformations, trained on a large synthetic dataset to encompass a broad range of transformation scenarios. Additionally, our hybrid pre-processing strategy aims to streamline the learning process by offering model-focused input. We evaluated our model's effectiveness on the publicly available AREDS dataset by using standard metrics such as image-level and parameter-level analyzes. Linear regression analysis reveals an average Pearson correlation coefficient (R) of 0.9876 across all quadratic transformation parameters. Image-level evaluation, comprising qualitative and quantitative analyzes, showcases significant improvements in Structural Similarity Index (SSIM) and Normalized Cross Correlation (NCC) scores, indicating its robust performance. Notably, precise matching of the optic disc and vessel locations with minimal global distortion are observed. These findings underscore the potential of GPT-based approaches in image registration methodologies, promising advancements in diagnosis, treatment planning, and disease monitoring in ophthalmology and beyond.

3.
Braz J Med Biol Res ; 57: e13238, 2024.
Article in English | MEDLINE | ID: mdl-38808885

ABSTRACT

Osteoarthritis (OA) is a highly prevalent joint disorder characterized by progressive degeneration of articular cartilage, subchondral bone remodeling, osteophyte formation, synovial inflammation, and meniscal damage. Although the etiology of OA is multifactorial, pro-inflammatory processes appear to play a key role in disease pathogenesis. Previous studies indicate that electroacupuncture (EA) exerts chondroprotective, anti-inflammatory, and analgesic effects in preclinical models of OA, but the mechanisms underlying these potential therapeutic benefits remain incompletely defined. This study aimed to investigate the effects of EA on OA development in a rat model, as well as to explore associated molecular mechanisms modulated by EA treatment. Forty rats were divided into OA, EA, antagomiR-214, and control groups. Following intra-articular injection of monosodium iodoacetate to induce OA, EA and antagomiR-214 groups received daily EA stimulation at acupoints around the knee joint for 21 days. Functional pain behaviors and chondrocyte apoptosis were assessed as outcome measures. The expression of microRNA-214 (miR-214) and its downstream targets involved in apoptosis and nociception, BAX and TRPV4, were examined. Results demonstrated that EA treatment upregulated miR-214 expression in OA knee cartilage. By suppressing pro-apoptotic BAX and pro-nociceptive TRPV4, this EA-induced miR-214 upregulation ameliorated articular pain and prevented chondrocyte apoptosis. These findings suggested that miR-214 plays a key role mediating EA's therapeutic effects in OA pathophysiology, and represents a promising OA treatment target for modulation by acupuncture.


Subject(s)
Apoptosis , Chondrocytes , Disease Models, Animal , Electroacupuncture , MicroRNAs , Osteoarthritis , Rats, Sprague-Dawley , TRPV Cation Channels , bcl-2-Associated X Protein , Animals , TRPV Cation Channels/metabolism , MicroRNAs/metabolism , Electroacupuncture/methods , Male , Osteoarthritis/therapy , Chondrocytes/metabolism , bcl-2-Associated X Protein/metabolism , Rats
4.
Braz. j. med. biol. res ; 57: e13238, fev.2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1557315

ABSTRACT

Osteoarthritis (OA) is a highly prevalent joint disorder characterized by progressive degeneration of articular cartilage, subchondral bone remodeling, osteophyte formation, synovial inflammation, and meniscal damage. Although the etiology of OA is multifactorial, pro-inflammatory processes appear to play a key role in disease pathogenesis. Previous studies indicate that electroacupuncture (EA) exerts chondroprotective, anti-inflammatory, and analgesic effects in preclinical models of OA, but the mechanisms underlying these potential therapeutic benefits remain incompletely defined. This study aimed to investigate the effects of EA on OA development in a rat model, as well as to explore associated molecular mechanisms modulated by EA treatment. Forty rats were divided into OA, EA, antagomiR-214, and control groups. Following intra-articular injection of monosodium iodoacetate to induce OA, EA and antagomiR-214 groups received daily EA stimulation at acupoints around the knee joint for 21 days. Functional pain behaviors and chondrocyte apoptosis were assessed as outcome measures. The expression of microRNA-214 (miR-214) and its downstream targets involved in apoptosis and nociception, BAX and TRPV4, were examined. Results demonstrated that EA treatment upregulated miR-214 expression in OA knee cartilage. By suppressing pro-apoptotic BAX and pro-nociceptive TRPV4, this EA-induced miR-214 upregulation ameliorated articular pain and prevented chondrocyte apoptosis. These findings suggested that miR-214 plays a key role mediating EA's therapeutic effects in OA pathophysiology, and represents a promising OA treatment target for modulation by acupuncture.

5.
Clin Exp Med ; 24(1): 4, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231301

ABSTRACT

Coronary artery lesions (CALs) are the most common complications of Kawasaki disease (KD) and play a crucial role in determining the prognosis of the disease. Consequently, the early identification of children with KD who are at risk of developing coronary artery damage is vitally important. We sought to investigate the relationship between the Systemic Immune-Inflammation Index (SII) and CALs in patients with KD and to assess its predictive value. We carried out a retrospective review and analysis of medical records for KD patients treated at the First Affiliated Hospital of Anhui Medical University between January 2017 and January 2023. We utilized single-variable tests, binary logistic regression analysis, ROC curve analysis, restricted cubic spline tests, and curve fitting to evaluate the association between SII and CALs. In our study, 364 patients were included, with 63 (17.3%) presenting with CALs at the time of admission. The binary logistic regression analysis indicated that SII was a significant risk factor for CALs at admission, evident in both unadjusted and models adjusted for confounders. The ROC curve analysis revealed an AUC (Area Under the Curve) value of 0.789 (95%CI 0.723-0.855, P < 0.001) for SII's predictive ability regarding CALs at admission. A consistent positive linear relationship between SII and the risk of CALs at admission was observed in both the raw and adjusted models. Our research findings suggest that SII serves as a risk factor for CALs and can be used as an auxiliary laboratory biomarker for predicting CALs.


Subject(s)
Mucocutaneous Lymph Node Syndrome , Child , Humans , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/diagnosis , Coronary Vessels , Inflammation , Risk Factors , ROC Curve
6.
Genes (Basel) ; 14(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38002955

ABSTRACT

Glucocorticoids (GCs) are known to regulate several physiological processes and are the mainstay in the management of inflammatory eye diseases. The long-term use of GC causes raised intraocular pressure (IOP) or ocular hypertension (OHT) in about 30-50% of the susceptible individuals depending on the route of administration, and can lead to steroid-induced secondary glaucoma. The present study aims to understand the role of microRNAs (miRNAs) in differential glucocorticoid (GC) responsiveness in human trabecular meshwork (HTM) cells using small RNA sequencing. The human organ-cultured anterior segment (HOCAS) model was used to identify whether donor eyes were from GC-responders (GC-R; n = 4) or GC-non-responders (GC-NR; n = 4) following treatment with either 100 nM dexamethasone (DEX) or ethanol (ETH) for 7 days. The total RNA was extracted from cultured HTM cells with known GC responsiveness, and the differentially expressed miRNAs (DEMIRs) were compared among the following five groups: Group #1: ETH vs. DEX-treated GC-R; #2: ETH vs. DEX-treated GC-NR; #3: overlapping DEGs between Group #1 and #2; #4: Unique DEMIRs of GC-R; #5: Unique DEMIRs of GC-NR; and validated by RT-qPCR. There were 13 and 21 DEMIRs identified in Group #1 and Group #2, respectively. Seven miRNAs were common miRNAs dysregulated in both GC-R and GC-NR (Group #3). This analysis allowed the identification of DEMIRs that were unique to GC-R (6 miRNAs) and GC-NR (14 miRNAs) HTM cells, respectively. Ingenuity Pathway Analysis identified enriched pathways and biological processes associated with differential GC responsiveness in HTM cells. This is the first study to reveal a unique miRNA signature between GC-R and GC-NR HTM cells, which raises the possibility of developing new molecular targets for the management of steroid-OHT/glaucoma.


Subject(s)
Glaucoma , MicroRNAs , Ocular Hypertension , Humans , Glucocorticoids/pharmacology , Trabecular Meshwork/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Ocular Hypertension/chemically induced , Ocular Hypertension/metabolism , Glaucoma/genetics , Dexamethasone/pharmacology , Sequence Analysis, RNA , Steroids/metabolism
7.
Sci Rep ; 13(1): 18392, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884624

ABSTRACT

This study evaluated the association between body pH value and preoperative deep vein thrombosis (DVT) in geriatric hip fractures. Older adult patients with hip fractures were screened between January 2015 and September 2019. The demographic and clinical characteristics of the patients were collected. Multivariate binary logistic regression and generalized additive models were used to identify the linear and nonlinear associations between pH value and preoperative DVT. Analyses were performed using EmpowerStats and R software. A total of 1465 patients were included in the study. DVT occurred in 476 (32.6%) of these admitted older adults. We observed a nonlinear association between the serum pH value and preoperative DVT in geriatric patients with hip fractures. A pH value of 7.39 was the inflection point in the curve, with pH highly correlated with DVT at pH < 7.39 (odds ratio [OR] 19.47; 95% confidence interval [CI] 1.45-260.91; P = 0.0249). Patients with lower pH had a lower chance of preoperative DVT formation, and the risk of DVT increased 18.47-fold for every 0.1 unit change in pH. Although at pH > 7.39, pH was not correlated with DVT (OR 1.26; 95% CI 0.85-1.86; P = 0.2561), the odds of DVT did not vary with pH, and the highest risk of thrombosis was reached. The body pH value is nonlinearly associated with preoperative DVT in geriatric patients with hip fractures, and it could be considered a predictor of the risk of DVT.Registered information This study is registered in the website of Chinese Clinical Trial Registry (ChiCTR: ChiCTR2200057323).


Subject(s)
Hip Fractures , Venous Thrombosis , Humans , Aged , Retrospective Studies , Hip Fractures/complications , Hip Fractures/surgery , Risk Factors , Venous Thrombosis/complications , Hydrogen-Ion Concentration , Incidence
8.
Ecotoxicol Environ Saf ; 262: 115157, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37348219

ABSTRACT

This is the first pilot meta-analysis on the association of prenatal phthalate exposure with childhood cardiometabolic risks. A systematic literature search was performed in MEDLINE, Web of Science and CNKI (Chinese National Knowledge Infrastructure) until June 5, 2023. A total of seven studies with 5746 children (2646 girls and 3100 boys) were finally included. Four, three and two studies investigated the effects of maternal phthalate exposure on childhood blood pressure (BP), blood lipids and blood glucose profiles, respectively. The pilot meta-analysis suggested that di-2-ethylhexyl phthalate (DEHP) metabolite exposure was associated with a decrease in childhood z-systolic BP (SBP, ß = -0.169, 95% CI = -0.338-0.001). Furthermore, the pooled results showed negative relationships of prenatal ∑DEHP exposure with z-SBP (ß = -0.109, 95% CI = -0.163 to -0.055) and z-diastolic BP (DBP, ß = -0.126, 95% CI = -0.182 to -0.069) in girls. In addition, MEP exposure was associated with z-SBP in girls (ß = -0.227, 95% CI = -0.387 to -0.066). The pooled result showed a positive relationship between prenatal ∑DEHP exposure and triglycerides (ß = 0.103, 95% CI = 0.028-0.178). The overall results revealed that exposure to ∑DEHP throughout gestation was associated with a decrease in insulin (ß = -0.074, 95% CI = -0.144 to -0.004) and glucose (ß = -0.129, 95% CI = -0.199 to -0.058) in boys. Interestingly, there was an inverse relationship of prenatal mono- 3 -carboxypropyl phthalate (MCPP) exposure with glucose in pubertal boys (ß = -3.749, 95% CIs = -6.758 to -0.741) but not found in postpubertal children. In conclusion, prenatal phthalate exposure interfered with cardiovascular risk in children with gender-specific differences and was influenced by puberty. Overall, prenatal ∑DEHP was negatively associated with systolic blood pressure in girls and with insulin and glucose in boys but increased the level of triglycerides.

9.
Mater Today Bio ; 20: 100630, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37114092

ABSTRACT

Modified macroporous structures and active osteogenic substances are necessary to overcome the limited bone regeneration capacity and low degradability of self-curing calcium phosphate cement (CPC). Curcumin (CUR), which possesses strong osteogenic activity and poor aqueous solubility/bioavailability, esterifies the side chains in hyaluronic acid (HA) to form a water-soluble CUR-HA macromolecule. In this study, we incorporated the CUR-HA and glucose microparticles (GMPs) into the CPC powder to fabricate the CUR-HA/GMP/CPC composite, which not only retained the good injectability and mechanical strength of bone cements, but also significantly increased the cement porosity and sustained release property of CUR-HA in vitro. CUR-HA incorporation greatly improved the differentiation ability of bone marrow mesenchymal stem cells (BMSCs) to osteoblasts by activating the RUNX family transcription factor 2/fibroblast growth factor 18 (RUNX2/FGF18) signaling pathway, increasing the expression of osteocalcin and enhancing the alkaline phosphatase activity. In addition, in vivo implantation of CUR-HA/GMP/CPC into femoral condyle defects dramatically accelerated the degradation rate of cement and boosted local vascularization and osteopontin protein expression, and consequently promoted rapid bone regeneration. Therefore, macroporous CPC based composite cement with CUR-HA shows a remarkable ability to repair bone defects and is a promising translational application of modified CPC in clinical practice.

10.
Appl Biochem Biotechnol ; 195(7): 4292-4307, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36689155

ABSTRACT

Intervertebral disc degeneration (IDD) is characterised by nucleus pulposus (NP) loss and extracellular matrix (ECM) degeneration. Circular RNAs (circRNAs) have been reported to be dysregulated during IDD progression. Recently, reports showed that hsa_circ_0040039 was increased in degenerated lumbar disc samples. The aim of this study was to explore the specific role and underlying mechanisms of hsa_circ_0040039 in IDD. The expression of hsa_circ_0040039 was investigated in NP tissues of IDD patients. IL-1ß was used to treat NP cells to construct an IDD in vitro model. Overexpression and loss-of-function assays and bioinformatic analysis were performed to evaluate the role and potential mechanism of hsa_circ_0040039 during IDD progression. Hsa_circ_0040039 expression was increased about 2 folds in NP tissues compared with normal tissues and IL-1ß-stimulated NP cells also presented hsa_circ_0040039 upregulation, and its overexpression promoted cell proliferation and ECM degeneration. The depletion of hsa_circ_0040039 had the opposite effects. Based on bioinformatics prediction, Luciferase assay, PCR and Western blot, our study verified that hsa_circ_0040039 directly bond to miR-146b-3p, then mediated its targeted MMP2 and PCNA. Moreover, the overexpression of miR-146b-3p and the silence of MMP2 or PCNA, partially abolished the effect of hsa_circ_0040039 on IL-1ß-stimulated NPs. Hsa_circ_0040039 may participate in IDD development by mediating the repair and regeneration of NPs through upregulation MMP2 and PCNA mediated by miR-146b-3p.


Subject(s)
Intervertebral Disc Degeneration , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Up-Regulation , Matrix Metalloproteinase 2/genetics , Proliferating Cell Nuclear Antigen/metabolism , Apoptosis , Eukaryotic Initiation Factor-4A/metabolism , DEAD-box RNA Helicases/metabolism
11.
Dev Cell ; 57(22): 2517-2532.e6, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36347256

ABSTRACT

Endocardial cells lining the heart lumen are coronary vessel progenitors during embryogenesis. Re-igniting this developmental process in adults could regenerate blood vessels lost during cardiac injury, but this requires additional knowledge of molecular mechanisms. Here, we use mouse genetics and scRNA-seq to identify regulators of endocardial angiogenesis and precisely assess the role of CXCL12/CXCR4 signaling. Time-specific lineage tracing demonstrated that endocardial cells differentiated into coronary endothelial cells primarily at mid-gestation. A new mouse line reporting CXCR4 activity-along with cell-specific gene deletions-demonstrated it was specifically required for artery morphogenesis rather than angiogenesis. Integrating scRNA-seq data of endocardial-derived coronary vessels from mid- and late-gestation identified a Bmp2-expressing transitioning population specific to mid-gestation. Bmp2 stimulated endocardial angiogenesis in vitro and in injured neonatal mouse hearts. Our data demonstrate how understanding the molecular mechanisms underlying endocardial angiogenesis can identify new potential therapeutic targets promoting revascularization of the injured heart.


Subject(s)
Coronary Vessels , Endocardium , Animals , Female , Mice , Pregnancy , Bone Morphogenetic Protein 2 , Cell Differentiation , Endothelial Cells , Heart , Organogenesis
12.
Contrast Media Mol Imaging ; 2022: 8346848, 2022.
Article in English | MEDLINE | ID: mdl-36105447

ABSTRACT

Objective: The aim of the research article is to explore the significance of continuous nursing of the Omaha system in children after hypospadias surgery and its influence on infection complications. Methods: From April 2019 to April 2021, Anhui Provincial Children's Hospital treated 76 children with hypospadias and they were selected as the research objects. In the light of the random number table method, children were classified into the control group and the study group, with 38 cases in each group. The control group applied routine postoperative nursing intervention, while the study group received Omaha system continuous nursing intervention based on the control group. The Omaha system outcome evaluation, complication rate, quality of life, and nursing satisfaction were recorded and discussed in all children. Results: The levels of physiological and psychological environment and health behavior in both groups after intervention were significantly higher than those before the intervention, and the levels of all dimensions in the study group were significantly higher than those in the control group (P < 0.05); the complication rate in the study group was 10.53% significantly lower than that in the control group (28.95%). After intervention, the physiological function, psychological and social function, emotional function, social interaction, and school status of the two groups were significantly higher than before intervention, and the score of each dimension in the study group was significantly higher than that in the control group (P < 0.05); the overall satisfaction of nursing in the study group was 94.74% significantly better than in the control group (81.59%) (P < 0.05). Conclusion: The continuous nursing intervention of the Omaha system for children with hypospadias can significantly improve the clinical condition of children, reduce the risk of infection complications, improve children's physical and mental health status, and improve nursing satisfaction, which is worthy of clinical practice.


Subject(s)
Hypospadias , Quality of Life , Child , Humans , Hypospadias/surgery , Male
13.
Sci Rep ; 12(1): 9564, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35689009

ABSTRACT

Glaucoma is a complex neurodegenerative disease resulting in progressive optic neuropathy and is a leading cause of irreversible blindness worldwide. Primary open angle glaucoma (POAG) is the predominant form affecting 65.5 million people globally. Despite the prevalence of POAG and the identification of over 120 glaucoma related genetic loci, the underlaying molecular mechanisms are still poorly understood. The transforming growth factor beta (TGF-ß) signalling pathway is implicated in the molecular pathology of POAG. To gain a better understanding of the role TGF-ß2 plays in the glaucomatous changes to the molecular pathology in the trabecular meshwork, we employed RNA-Seq to delineate the TGF-ß2 induced changes in the transcriptome of normal primary human trabecular meshwork cells (HTM). We identified a significant number of differentially expressed genes and associated pathways that contribute to the pathogenesis of POAG. The differentially expressed genes were predominantly enriched in ECM regulation, TGF-ß signalling, proliferation/apoptosis, inflammation/wound healing, MAPK signalling, oxidative stress and RHO signalling. Canonical pathway analysis confirmed the enrichment of RhoA signalling, inflammatory-related processes, ECM and cytoskeletal organisation in HTM cells in response to TGF-ß2. We also identified novel genes and pathways that were affected after TGF-ß2 treatment in the HTM, suggesting additional pathways are activated, including Nrf2, PI3K-Akt, MAPK and HIPPO signalling pathways. The identification and characterisation of TGF-ß2 dependent differentially expressed genes and pathways in HTM cells is essential to understand the patho-physiology of glaucoma and to develop new therapeutic agents.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Neurodegenerative Diseases , Cells, Cultured , Gene Expression Profiling , Glaucoma/pathology , Glaucoma, Open-Angle/drug therapy , Humans , Neurodegenerative Diseases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Trabecular Meshwork/metabolism , Transforming Growth Factor beta2/metabolism
14.
Nat Cardiovasc Res ; 1(8): 775-790, 2022 Aug.
Article in English | MEDLINE | ID: mdl-37305211

ABSTRACT

Collateral arteries bridge opposing artery branches, forming a natural bypass that can deliver blood flow downstream of an occlusion. Inducing coronary collateral arteries could treat cardiac ischemia, but more knowledge on their developmental mechanisms and functional capabilities is required. Here we used whole-organ imaging and three-dimensional computational fluid dynamics modeling to define spatial architecture and predict blood flow through collaterals in neonate and adult mouse hearts. Neonate collaterals were more numerous, larger in diameter and more effective at restoring blood flow. Decreased blood flow restoration in adults arose because during postnatal growth coronary arteries expanded by adding branches rather than increasing diameters, altering pressure distributions. In humans, adult hearts with total coronary occlusions averaged 2 large collaterals, with predicted moderate function, while normal fetal hearts showed over 40 collaterals, likely too small to be functionally relevant. Thus, we quantify the functional impact of collateral arteries during heart regeneration and repair-a critical step toward realizing their therapeutic potential.

15.
Biomed Res Int ; 2021: 2698642, 2021.
Article in English | MEDLINE | ID: mdl-34532498

ABSTRACT

BACKGROUND: About 1/3 of tibial plateau fractures are associated with proximal fibula fractures, but most proximal fibula fractures are often ignored. The aim of this study was to precisely explain the classification and treatment strategies of six injury types of the fibular column associated with tibial plateau fractures. METHODS: Patients with ipsilateral proximal fibula and tibial plateau fractures treated in our hospital were retrospectively reviewed from Aug 2007 to Mar 2020. Two experienced surgeons and two radiologists divided fibular column injury into 6 injury types according to the AO classification and four-column nine-segment classification. The treatment scheme (surgically treated or conservatively treated) was also recorded. RESULTS: In total, 355 proximal fibula fractures were included. Type 2 fibular head fracture was the most common type of injury in 122, and the segregate of superior tibiofibular syndesmosis was the rarest type in 3. In avulsion injury proximal of fibular pattern, the proportion of patients who need surgical intervention is the highest. CONCLUSIONS: Six injury types in the four-column nine-segment classification covered all types of bony and soft tissue injuries of the fibular column and concisely explained the injury mechanism. The classification is helpful for the precise judgement and decision-making of the concomitant fibular column injuries in tibial plateau fractures.


Subject(s)
Fibula/surgery , Tibia/surgery , Tibial Fractures/surgery , Adult , Aged , China , Female , Fracture Fixation, Internal , Fracture Healing , Hospitals , Humans , Male , Middle Aged , Retrospective Studies , Tibial Fractures/classification , Tomography, X-Ray Computed
16.
Biomolecules ; 11(9)2021 09 16.
Article in English | MEDLINE | ID: mdl-34572584

ABSTRACT

Glaucoma is one of the leading causes of vision loss worldwide, characterised with irreversible optic nerve damage and progressive vision loss. Primary open-angle glaucoma (POAG) is a subset of glaucoma, characterised by normal anterior chamber angle and raised intraocular pressure (IOP). Reducing IOP is the main modifiable factor in the treatment of POAG, and the trabecular meshwork (TM) is the primary site of aqueous humour outflow (AH) and the resistance to outflow. The structure and the composition of the TM are key to its function in regulating AH outflow. Dysfunction and loss of the TM cells found in the natural ageing process and more so in POAG can cause abnormal extracellular matrix (ECM) accumulation, increased TM stiffness, and increased IOP. Therefore, repair or regeneration of TM's structure and function is considered as a potential treatment for POAG. Cell transplantation is an attractive option to repopulate the TM cells in POAG, but to develop a cell replacement approach, various challenges are still to be addressed. The choice of cell replacement covers autologous or allogenic approaches, which led to investigations into TM progenitor cells, induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) as potential stem cell source candidates. However, the potential plasticity and the lack of definitive cell markers for the progenitor and the TM cell population compound the biological challenge. Morphological and differential gene expression of TM cells located within different regions of the TM may give rise to different cell replacement or regenerative approaches. As such, this review describes the different approaches taken to date investigating different cell sources and their differing cell isolation and differentiation methodologies. In addition, we highlighted how these approaches were evaluated in different animal and ex vivo model systems and the potential of these methods in future POAG treatment.


Subject(s)
Intraocular Pressure/physiology , Trabecular Meshwork/cytology , Animals , Biomarkers/metabolism , Humans , Stem Cells/cytology , Trabecular Meshwork/transplantation
19.
Mol Cell ; 81(19): 4091-4103.e9, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34348091

ABSTRACT

We describe PROPER-seq (protein-protein interaction sequencing) to map protein-protein interactions (PPIs) en masse. PROPER-seq first converts transcriptomes of input cells into RNA-barcoded protein libraries, in which all interacting protein pairs are captured through nucleotide barcode ligation, recorded as chimeric DNA sequences, and decoded at once by sequencing and mapping. We applied PROPER-seq to human embryonic kidney cells, T lymphocytes, and endothelial cells and identified 210,518 human PPIs (collected in the PROPER v.1.0 database). Among these, 1,365 and 2,480 PPIs are supported by published co-immunoprecipitation (coIP) and affinity purification-mass spectrometry (AP-MS) data, 17,638 PPIs are predicted by the prePPI algorithm without previous experimental validation, and 100 PPIs overlap human synthetic lethal gene pairs. In addition, four previously uncharacterized interaction partners with poly(ADP-ribose) polymerase 1 (PARP1) (a critical protein in DNA repair) known as XPO1, MATR3, IPO5, and LEO1 are validated in vivo. PROPER-seq presents a time-effective technology to map PPIs at the transcriptome scale, and PROPER v.1.0 provides a rich resource for studying PPIs.


Subject(s)
Computational Biology , Gene Expression Profiling , Protein Interaction Mapping , Protein Interaction Maps , Proteins/genetics , Proteins/metabolism , RNA-Seq , Transcriptome , Databases, Genetic , Female , Genes, Lethal , HEK293 Cells , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Jurkat Cells , Karyopherins/genetics , Karyopherins/metabolism , Kidney/metabolism , Male , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Software , T-Lymphocytes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , beta Karyopherins/genetics , beta Karyopherins/metabolism , Exportin 1 Protein
20.
Elife ; 102021 02 08.
Article in English | MEDLINE | ID: mdl-33554859

ABSTRACT

Protein interaction is critical molecular regulatory activity underlining cellular functions and precise cell fate choices. Using TWIST1 BioID-proximity-labeling and network propagation analyses, we discovered and characterized a TWIST-chromatin regulatory module (TWIST1-CRM) in the neural crest cells (NCC). Combinatorial perturbation of core members of TWIST1-CRM: TWIST1, CHD7, CHD8, and WHSC1 in cell models and mouse embryos revealed that loss of the function of the regulatory module resulted in abnormal differentiation of NCCs and compromised craniofacial tissue patterning. Following NCC delamination, low level of TWIST1-CRM activity is instrumental to stabilize the early NCC signatures and migratory potential by repressing the neural stem cell programs. High level of TWIST1 module activity at later phases commits the cells to the ectomesenchyme. Our study further revealed the functional interdependency of TWIST1 and potential neurocristopathy factors in NCC development.


Shaping the head and face during development relies on a complex ballet of molecular signals that orchestrates the movement and specialization of various groups of cells. In animals with a backbone for example, neural crest cells (NCCs for short) can march long distances from the developing spine to become some of the tissues that form the skull and cartilage but also the pigment cells and nervous system. NCCs mature into specific cell types thanks to a complex array of factors which trigger a precise sequence of binary fate decisions at the right time and place. Amongst these factors, the protein TWIST1 can set up a cascade of genetic events that control how NCCs will ultimately form tissues in the head. To do so, the TWIST1 protein interacts with many other molecular actors, many of which are still unknown. To find some of these partners, Fan et al. studied TWIST1 in the NCCs of mice and cells grown in the lab. The experiments showed that TWIST1 interacted with CHD7, CHD8 and WHSC1, three proteins that help to switch genes on and off, and which contribute to NCCs moving across the head during development. Further work by Fan et al. then revealed that together, these molecular actors are critical for NCCs to form cells that will form facial bones and cartilage, as opposed to becoming neurons. This result helps to show that there is a trade-off between NCCs forming the face or being part of the nervous system. One in three babies born with a birth defect shows anomalies of the head and face: understanding the exact mechanisms by which NCCs contribute to these structures may help to better predict risks for parents, or to develop new approaches for treatment.


Subject(s)
Cell Differentiation , Chromatin/metabolism , Neural Crest/cytology , Neural Crest/metabolism , Twist-Related Protein 1/metabolism , Animals , Chromatin/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Mice , Neural Crest/embryology , Twist-Related Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL