Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.132
Filter
1.
Clin Transl Med ; 14(8): e1738, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39095323

ABSTRACT

BACKGROUND: The therapeutic potential of immune checkpoint blockade (ICB) extends across various cancers; however, its effectiveness in treating hepatocellular carcinoma (HCC) is frequently curtailed by both inherent and developed resistance. OBJECTIVE: This research explored the effectiveness of integrating anlotinib (a broad-spectrum tyrosine kinase inhibitor) with programmed death-1 (PD-1) blockade and offers mechanistic insights into more effective strategies for treating HCC. METHODS: Using patient-derived organotypic tissue spheroids and orthotopic HCC mouse models, we assessed the effectiveness of anlotinib combined with PD-1 blockade. The impact on the tumour immune microenvironment and underlying mechanisms were assessed using time-of-flight mass cytometry, RNA sequencing, and proteomics across cell lines, mouse models, and HCC patient samples. RESULTS: The combination of anlotinib with an anti-PD-1 antibody enhanced the immune response against HCC in preclinical models. Anlotinib remarkably suppressed the expression of transferrin receptor (TFRC) via the VEGFR2/AKT/HIF-1α signaling axis. CD8+ T-cell infiltration into the tumour microenvironment correlated with low expression of TFRC. Anlotinib additionally increased the levels of the chemokine CXCL14, crucial for attracting CD8+ T cells. CXCL14 emerged as a downstream effector of TFRC, exhibiting elevated expression following the silencing of TFRC. Importantly, low TFRC expression was also associated with a better prognosis, enhanced sensitivity to combination therapy, and a favourable response to anti-PD-1 therapy in patients with HCC. CONCLUSIONS: Our findings highlight anlotinib's potential to augment the efficacy of anti-PD-1 immunotherapy in HCC by targeting TFRC and enhancing CXCL14-mediated CD8+ T-cell infiltration. This study contributes to developing novel therapeutic strategies for HCC, emphasizing the role of precision medicine in oncology. HIGHLIGHTS: Synergistic effects of anlotinib and anti-PD-1 immunotherapy demonstrated in HCC preclinical models. Anlotinib inhibits TFRC expression via the VEGFR2/AKT/HIF-1α pathway. CXCL14 upregulation via TFRC suppression boosts CD8+ T-cell recruitment. TFRC emerges as a potential biomarker for evaluating prognosis and predicting response to anti-PD-1-based therapies in advanced HCC patients.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Immunotherapy , Indoles , Liver Neoplasms , Quinolines , Receptors, Transferrin , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Quinolines/pharmacology , Quinolines/therapeutic use , Quinolines/administration & dosage , Animals , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Indoles/pharmacology , Indoles/therapeutic use , Humans , Immunotherapy/methods , Receptors, Transferrin/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
2.
Mol Cancer ; 23(1): 157, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095854

ABSTRACT

BACKGROUND: Tumor heterogeneity presents a formidable challenge in understanding the mechanisms driving tumor progression and metastasis. The heterogeneity of hepatocellular carcinoma (HCC) in cellular level is not clear. METHODS: Integration analysis of single-cell RNA sequencing data and spatial transcriptomics data was performed. Multiple methods were applied to investigate the subtype of HCC tumor cells. The functional characteristics, translation factors, clinical implications and microenvironment associations of different subtypes of tumor cells were analyzed. The interaction of subtype and fibroblasts were analyzed. RESULTS: We established a heterogeneity landscape of HCC malignant cells by integrated 52 single-cell RNA sequencing data and 5 spatial transcriptomics data. We identified three subtypes in tumor cells, including ARG1+ metabolism subtype (Metab-subtype), TOP2A+ proliferation phenotype (Prol-phenotype), and S100A6+ pro-metastatic subtype (EMT-subtype). Enrichment analysis found that the three subtypes harbored different features, that is metabolism, proliferating, and epithelial-mesenchymal transition. Trajectory analysis revealed that both Metab-subtype and EMT-subtype originated from the Prol-phenotype. Translation factor analysis found that EMT-subtype showed exclusive activation of SMAD3 and TGF-ß signaling pathway. HCC dominated by EMT-subtype cells harbored an unfavorable prognosis and a deserted microenvironment. We uncovered a positive loop between tumor cells and fibroblasts mediated by SPP1-CD44 and CCN2/TGF-ß-TGFBR1 interaction pairs. Inhibiting CCN2 disrupted the loop, mitigated the transformation to EMT-subtype, and suppressed metastasis. CONCLUSION: By establishing a heterogeneity landscape of malignant cells, we identified a three-subtype classification in HCC. Among them, S100A6+ tumor cells play a crucial role in metastasis. Targeting the feedback loop between tumor cells and fibroblasts is a promising anti-metastatic strategy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Animals , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Genetic Heterogeneity , Mice , Cell Line, Tumor , Prognosis , Gene Expression Profiling , Transcriptome , Computational Biology/methods , Neoplasm Metastasis
3.
Front Neurol ; 15: 1413582, 2024.
Article in English | MEDLINE | ID: mdl-38974685

ABSTRACT

Background: Epilepsy ranks among the most common neurological disorders worldwide, frequently accompanied by depression as a prominent comorbidity. This study employs bibliometric analysis to reveal the research of comorbid epilepsy and depression over the past two decades, aiming to explore trends and contribute insights to ongoing investigations. Methods: We conducted a comprehensive search on the Web of Science Core Collection database and downloaded relevant publications on comorbid epilepsy and depression published from 2003 to 2023. VOSviewer and CiteSpace were mainly used to analyze the authors, institutions, countries, publishing journals, reference co-citation patterns, keyword co-occurrence, keyword clustering, and other aspects to construct a knowledge atlas. Results: A total of 5,586 publications related to comorbid epilepsy and depression were retrieved, with a general upward trend despite slight fluctuations in annual publications. Publications originated from 121 countries and 636 institutions, with a predominant focus on clinical research. The United States led in productivity (1,529 articles), while Melbourne University emerged as the most productive institution (135 articles). EPILEPSY & BEHAVIOR was the journal with the highest publication output (1,189 articles) and citation count. Keyword analysis highlighted emerging trends, including "recognitive impairment" and "mental health," indicating potential future research hotspots and trends. Conclusion: This study is one of the first to perform a bibliometric analysis of the 20-year scientific output of comorbid epilepsy and depression. While research has trended upwards, ambiguity in pathogenesis and the absence of standardized diagnostic guidelines remain concerning. Our analysis offers valuable guidance for researchers, informing that this might be a strong area for future collaborations.

4.
Int J Oncol ; 65(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-39054958

ABSTRACT

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that a possible error had been identified in the selection of images in Figs. 1 and/or 7. After having consulted their original data, the authors realized that an erroneous image appeared on p. 593, in Fig. 7F [the 'Hep­G2 / IL­8 (5 ng/ml)' data panel], where part of this figure panel was overlapping with an image on p. 589 in Fig. 1C (the 'Hep­G2 Co­cultured' data panel). After a thorough review and verification of the data by all the authors, they have confirmed that the original data presented in the paper were accurate, and the error was solely due to the selection of an incorrect image during figure arrangement. The authors confirm that this mistake in image selection did not affect the overall conclusions reported in the article. A corrected version of Fig. 7, including the correct data for the 'Hep­G2 / IL­8 (5 ng/ml)' panel in Fig. 7F, is shown on the next page. The authors are grateful to the Editor of International Journal of Oncology for granting them the opportunity to publish this Corrigendum. All the authors agree to the publication of this Corrigendum, and apologize to the readership for any inconvenience caused. [International Journal of Oncology 46: 587­596, 2015; DOI: 10.3892/ijo.2014.2761].

5.
BMC Med ; 22(1): 282, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972973

ABSTRACT

BACKGROUND: The advances in deep learning-based pathological image analysis have invoked tremendous insights into cancer prognostication. Still, lack of interpretability remains a significant barrier to clinical application. METHODS: We established an integrative prognostic neural network for intrahepatic cholangiocarcinoma (iCCA), towards a comprehensive evaluation of both architectural and fine-grained information from whole-slide images. Then, leveraging on multi-modal data, we conducted extensive interrogative approaches to the models, to extract and visualize the morphological features that most correlated with clinical outcome and underlying molecular alterations. RESULTS: The models were developed and optimized on 373 iCCA patients from our center and demonstrated consistent accuracy and robustness on both internal (n = 213) and external (n = 168) cohorts. The occlusion sensitivity map revealed that the distribution of tertiary lymphoid structures, the geometric traits of the invasive margin, the relative composition of tumor parenchyma and stroma, the extent of necrosis, the presence of the disseminated foci, and the tumor-adjacent micro-vessels were the determining architectural features that impacted on prognosis. Quantifiable morphological vector extracted by CellProfiler demonstrated that tumor nuclei from high-risk patients exhibited significant larger size, more distorted shape, with less prominent nuclear envelope and textural contrast. The multi-omics data (n = 187) further revealed key molecular alterations left morphological imprints that could be attended by the network, including glycolysis, hypoxia, apical junction, mTORC1 signaling, and immune infiltration. CONCLUSIONS: We proposed an interpretable deep-learning framework to gain insights into the biological behavior of iCCA. Most of the significant morphological prognosticators perceived by the network are comprehensible to human minds.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Deep Learning , Humans , Cholangiocarcinoma/pathology , Prognosis , Bile Duct Neoplasms/pathology , Male , Female , Middle Aged , Image Processing, Computer-Assisted/methods , Aged
6.
Hypertension ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005213

ABSTRACT

BACKGROUND: The blood pressure (BP) etiologic study is complex due to multifactorial influences, including genetic, environmental, lifestyle, and their intricate interplays. We used a metabolomics approach to capture internal pathways and external exposures and to study BP regulation mechanisms after well-controlled dietary interventions. METHODS: In the ProBP trail (Protein and Blood Pressure), a double-blinded crossover randomized controlled trial, participants underwent dietary interventions of carbohydrate, soy protein, and milk protein, receiving 40 g daily for 8 weeks, with 3-week washout periods. We measured plasma samples collected at baseline and at the end of each dietary intervention. Multivariate linear models were used to evaluate the association between metabolites and systolic/diastolic BP. Nominally significant metabolites were examined for enriching biological pathways. Significant ProBP findings were evaluated for replication among 1311 participants of the BHS (Bogalusa Heart Study), a population-based study conducted in the same area as ProBP. RESULTS: After Bonferroni correction for 77 independent metabolite clusters (α=6.49×10-4), 18 metabolites were significantly associated with BP at baseline or the end of a dietary intervention, of which 11 were replicated in BHS. Seven emerged as novel discoveries, which are as follows: 1-linoleoyl-GPE (18:2), 1-oleoyl-GPE (18:1), 1-stearoyl-2-linoleoyl-GPC (18:0/18:2), 1-palmitoyl-2-oleoyl-GPE (16:0/18:1), maltose, N-stearoyl-sphinganine (d18:0/18:0), and N6-carbamoylthreonyladenosine. Pathway enrichment analyses suggested dietary protein intervention might reduce BP through pathways related to G protein-coupled receptors, incretin function, selenium micronutrient network, and mitochondrial biogenesis. CONCLUSIONS: Seven novel metabolites were identified to be associated with BP at the end of different dietary interventions. The beneficial effects of protein interventions might be mediated through specific metabolic pathways.

7.
Liver Int ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037259

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) facilitate cell-cell interactions in the tumour microenvironment. However, standard and efficient methods to isolate tumour tissue-derived EVs are lacking, and their biological functions remain elusive. METHODS: To determine the optimal method for isolating tissue-derived EVs, we compared the characterization and concentration of EVs obtained by three previously reported methods using transmission electron microscopy, nanoparticle tracking analysis, and nanoflow analysis (Nanoflow). Additionally, the differential content of small RNAs, especially tsRNAs, between hepatocellular carcinoma (HCC) and adjacent normal liver tissues (ANLTs)-derived EVs was identified using Arraystar small RNA microarray. The targets of miRNAs and tsRNAs were predicted, and downstream functional analysis was conducted using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, non-negative matrix factorization and survival prediction analysis. RESULTS: A differential centrifugation-based protocol without cell cultivation (NC protocol) yielded higher EV particles and higher levels of CD9+ and CD63+ EVs compared with other isolation protocols. Interestingly, the NC protocol was also effective for isolating frozen tissue-derived EVs that were indistinguishable from fresh tissue. HCC tissues showed significantly higher EV numbers compared with ANLTs. Furthermore, we identified different types of small RNAs in HCC tissue-derived EVs, forming a unique multidimensional intercellular communication landscape that can differentiate between HCC and ANLTs. ROC analysis further showed that the combination of the top 10 upregulated small RNAs achieved better diagnostic performance (AUC = .950 [.895-1.000]). Importantly, most tsRNAs in HCC tissue-derived EVs were downregulated and mitochondria-derived, mainly involving in lipid-related metabolic reprogramming. CONCLUSION: The NC protocol was optimal for isolating EVs from HCC, especially from frozen tissues. Our study emphasized the different roles of small-RNA in regulating the HCC ecosystem, providing insights into HCC progression and potential therapeutic targets.

8.
Heliyon ; 10(12): e33073, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021994

ABSTRACT

At present, in the process of weld induction heat treatment, the common method is to carry out centralized induction heating in the weld area, which will lead to large radial temperature difference of the weld, poor controllability of temperature distribution and easy to cause the defects of residual stress concentration in the weld area. To solve the above problems, this paper adopts the two-sided method to conduct induction heating on both sides of the weld, and at the same time, the auxiliary pulse current is passed into the weld to improve the quality of the weld. ANSYS finite element software is used to establish a multi-field coupling prediction model of electric-magnetic-thermal structure, and explore the distribution law of the auxiliary pulse current and the temperature field of the weld. Finally, an experimental study of pulsed current assisted two-sided induction heating is carried out. Temperature test and metallographic test were carried out respectively to verify the effectiveness of pulsed current assisted induction heating technology.

9.
J Cancer Res Clin Oncol ; 150(7): 348, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002018

ABSTRACT

BACKGROUND & AIMS: Patients with intrahepatic cholangiocarcinoma (iCCA) respond poorly to immune checkpoint blockades (ICBs). In this study, we aimed to dissect the potential mechanisms underlying poor response to ICBs and explore a rational ICB-based combination therapy in iCCA. METHODS: scRNA-seq dataset GSE151530 was analyzed to investigate the differentially expressed genes in malignant cells following ICBs therapy. RNA-seq analysis and western blot assays were performed to examine the upstream and downstream signaling pathways of CD73. Subcutaneous tumor xenograft models were utilized to investigate the impact of CD73 on iCCA growth. Plasmid AKT/NICD-induced spontaneous murine iCCAs were used to explore the therapeutic efficacy of CD73 enzymatic inhibitor AB680 combined with PD-1 blockade. Time-of-flight mass cytometry (CyTOF) was conducted to identify the tumor-infiltrating immune cell populations and their functional changes in murine iCCAs treated with AB680 in combination with PD-1 antibody. RESULTS: scRNA-seq analysis identified elevated CD73 expression in malignant cells in response to ICBs therapy. Mechanistically, ICBs therapy upregulated CD73 expression in malignant cells via TNF-α/NF-κB signaling pathway. In vivo studies revealed that CD73 inhibition suppressed the growth of subcutaneous tumors, and achieved synergistic depression effects with gemcitabine and cisplatin (GC). Adenosine produced by CD73 activates AKT/GSK3ß/ß-catenin signaling axis in iCCA cells. CD73 inhibitor AB680 potentiates anti-tumor efficacy of PD-1 antibody in murine iCCAs. CyTOF analysis showed that AB680 combined with anti-PD-1 therapy promoted the infiltration of CD8+ T, CD4+ T cells, and NK cells in murine iCCAs, while simultaneously decreased the proportions of macrophages and neutrophils. Moreover, AB680 combined with anti-PD-1 significantly upregulated the expression of Granzyme B, Tbet and co-stimulatory molecule ICOS in infiltrating CD8+ T cells. CONCLUSIONS: CD73 inhibitor AB680 limits tumor progression and potentiates therapeutic efficacy of GC chemotherapy or anti-PD-1 treatment in iCCA. AB680 combined with anti-PD-1 therapy effectively elicits anti-tumor immune response.


Subject(s)
5'-Nucleotidase , Bile Duct Neoplasms , Cholangiocarcinoma , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/immunology , Animals , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/metabolism , Mice , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/immunology , Bile Duct Neoplasms/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Disease Progression
10.
Front Public Health ; 12: 1408006, 2024.
Article in English | MEDLINE | ID: mdl-38975362

ABSTRACT

Background: Medical staff play a crucial role in delivering healthcare services, especially during epidemics of infectious diseases such as coronavirus disease 2019 (COVID-19). However, there is a growing issue of burnout and low wellbeing among this group. While it is widely recognized that burnout has a negative impact on subjective wellbeing, the exact relationship between the two is not yet completely understood. The purpose of this study is to explore the chain mediating role of psychological capital and perceived social support between burnout and subjective wellbeing among medical staff. Methods: Using the convenient sampling method, 604 medical staff were selected for a cross-sectional study. All participants completed a self-report questionnaire that collected demographic information, as well as data from the Maslach Burnout Inventory-Human Services Survey, General Wellbeing Schedule, Psychological Capital Questionnaire, and Perceived Social Support Scale. SPSS 27.0 and SPSS PROCESS macro were used for data analysis. Results: There was a significant correlation between burnout, psychological capital, perceived social support, and subjective wellbeing (p < 0.01). Burnout not only has a direct negative impact on the subjective wellbeing of medical staff (effect: -0.2045; Bootstrap 95%CI: -0.2506, -0.1583), but also exerts an indirect influence on subjective wellbeing through three pathways: the independent mediating effect of psychological capital (effect: -0.0481; Bootstrap 95%CI: -0.0876, -0.0109), the independent mediating effect of perceived social support (effect: -0.0092; Bootstrap 95%CI: -0.0203, -0.0003), and the chained mediating effect of psychological capital and perceived social support (effect: -0.0092; Bootstrap 95%CI: -0.0183, -0.0019). Conclusion: High burnout in medical staff can impair the level of psychological capital, leading to diminished perceived social support and ultimately reduced subjective wellbeing. The findings of this study contribute to understanding the potential pathways between burnout and subjective wellbeing and provide preliminary data support for developing strategies to improve the mental health of medical staff.


Subject(s)
Burnout, Professional , COVID-19 , Social Support , Humans , Burnout, Professional/psychology , Male , Female , Cross-Sectional Studies , Adult , Surveys and Questionnaires , COVID-19/psychology , COVID-19/epidemiology , Medical Staff/psychology , Medical Staff/statistics & numerical data , Middle Aged , Self Report
11.
Opt Lett ; 49(13): 3737-3740, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950255

ABSTRACT

An approach for continuous tuning of on-chip optical delay with a microring resonator is proposed and demonstrated. By introducing an electro-optically tunable waveguide coupler, the bus waveguide to the resonance coupling can be effectively tuned from the under-coupling regime to the over-coupling regime. The optical delay is experimentally characterized by measuring the relative phase shift between lasers and shows a large dynamic range of delay from -600 to 600 ps and an efficient tuning of delay from -430 to -180 ps and from 40 to 240 ps by only a 5 V voltage.

12.
Cell Mol Life Sci ; 81(1): 327, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085655

ABSTRACT

Dysregulation of mucosal immune system has been proposed to be critical in the pathogenesis of inflammatory bowel diseases (IBDs). Regulatory T cells (Tregs) play an important role in regulating immune responses. Tregs are involved in maintaining intestinal homeostasis and exerting suppressive function in colitis. Our previous studies showed that a novel forkhead box protein P3 (Foxp3) negative Tregs (Treg-of-B cells), induced by culturing naïve CD4+ T cells with B cells, could protect against colitis and downregulate T helper (Th) 1 and Th17 cell cytokines in T cell-mediated colitis. In the present study, we aimed to induce Treg-of-B cells in the CD8+ T-cell population and investigate their characteristics and immunomodulatory functions. Our results showed that CD8+ Treg-of-B cells expressed Treg-associated markers, including lymphocyte-activation gene-3 (LAG3), inducible co-stimulator (ICOS), programmed death-1 (PD-1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), tumor necrosis factor receptor superfamily member-4 (TNFRSF4, OX40), and tumor necrosis factor receptor superfamily member-18 (TNFRSF18, GITR), but did not express Foxp3. CD8+ Treg-of-B cells produced higher concentration of inhibitory cytokine interleukin (IL)-10, and expressed higher levels of cytotoxic factor granzyme B and perforin after stimulation, compared to those of CD8+CD25- T cells. Moreover, CD8+ Treg-of-B cells suppressed T cell proliferation in vitro and alleviated colonic inflammation in chronic dextran sulfate sodium (DSS)-induced colitis. In conclusion, our study identified a novel subpopulation of CD8+ Tregs with suppressive effects through cell contact. These CD8+ Treg-of-B cells might have therapeutic potential for IBDs.


Subject(s)
CD8-Positive T-Lymphocytes , Disease Models, Animal , Inflammatory Bowel Diseases , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Colitis/immunology , Colitis/pathology , Colitis/chemically induced , Dextran Sulfate , Forkhead Transcription Factors/metabolism , Interleukin-10/metabolism , Interleukin-10/immunology
13.
J Cancer Res Clin Oncol ; 150(7): 341, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976030

ABSTRACT

PURPOSE: To investigate whether prognosis of patients with hepatocellular carcinoma (HCC) is affected by the abundance and subgroups of myeloid-derived suppressor cells (MDSCs) as well as subtypes and expression of apolipoprotein E (apoE). METHODS: 31 HCC patients were divided into three groups according to blood total apoE level for detecting the abundance of immunoregulatory cells by flow cytometry. Tumour tissue microarrays from 360 HCC patients were evaluated about the abundance and subgroups of MDSCs and the expression of apoE2, apoE3, apoE4 by immunofluorescence staining and immunohistochemistry staining. Survival analysis by means of univariate, multivariate COX regression and Kaplan-Meier methods of the 360 patients was performed based on clinical and pathological examinations along with 10 years' follow-up data. RESULTS: The lower apoE group presented higher abundance of MDSCs in the peripheral blood of HCC patients than higher apoE group. The abundance of monocyte-like MDSCs (M-MDSCs) was higher in the apoE low level group than high level group (p = 0.0399). Lower H-score of apoE2 (HR = 6.140, p = 0.00005) and higher H-score of apoE4 (HR = 7.001, p = 0.009) in tumour tissue were significantly associated with shorter overall survival (OS). The higher infiltration of polymorphonuclear granulocyte-like MDSCs (PMN-MDSCs, HR = 3.762, p = 0.000009) and smaller proportion of M-MDSCs of total cells (HR = 0.454, p = 0.006) in tumour tissue were independent risk factors for shorter recurrence-free survival (RFS). CONCLUSION: The abundance of MDSCs in HCC patients' plasma negatively correlates with the level of apoE. The expression of apoE4 in HCC tissue indicated a poor prognosis while apoE2 might be a potential protective factor.


Subject(s)
Apolipoproteins E , Carcinoma, Hepatocellular , Liver Neoplasms , Myeloid-Derived Suppressor Cells , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Liver Neoplasms/metabolism , Male , Prognosis , Female , Middle Aged , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Apolipoproteins E/genetics , Aged , Adult
14.
Biomedicines ; 12(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39062159

ABSTRACT

Hyaluronic-acid- and silk-fibroin-based nanofibrous mats loaded with proanthocyanidins and collagen peptides were fabricated as multifunctional facial masks using electrospinning. Their morphology, hygroscopicity and moisture retention, DPPH, ABTS free radical scavenging abilities, and cytocompatibility were investigated. The results showed that the nanofibrous mats were dense and uniform, with an average diameter ranging from 300 to 370 nm. The nanofibrous mats exhibited satisfactory moisture retention, oxidation resistance, biocompatibility, especially excellent DPPH, and ABTS free radical scavenging capacities. DPPH free radical scavenging activity was 90% with 15 mg/L nanofibers, and ABTS free radical scavenging activity was 90% with 0.005 mg/L nanofibers. The nanofibrous mats protected fibroblasts from oxidative stress damage induced by tert-butyl hydroperoxide (t-BHP) and significantly promoted their proliferation. Compared with traditional liquid masks and semi-solid facial masks, the multifunctional nanofibrous mats prepared in this study contained fewer additives, which has significant advantages in terms of safety. The nanofibrous mats were rapidly dissolved within 5 s after being sprayed with water, which facilitated the release and penetration of active ingredients for skincare. Therefore, the multifunctional nanofibrous mats displayed excellent moisture retention, oxidation resistance, and biocompatibility, indicating promising translational potential as facial masks and providing a valuable reference for skincare.

15.
Int J Biol Macromol ; : 134120, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39074701

ABSTRACT

Imbalanced Sirtuin 1 (SIRT1) levels may lead to liver diseases through abnormal regulation of autophagy, but the roles of SIRT1-regulated autophagy in hepatocellular carcinoma are still controversial. In this study, we found that SIRT1 mRNA and protein levels were upregulated in hepatocellular carcinoma, and high SIRT1 expression hinted an advanced stage and a poor prognosis. The differentially expressed proteins were significantly elevated in autophagy, cellular response to stress, and immune signaling pathways. In a thioacetamide-induced hepatocellular carcinoma mouse model, we found that SIRT1 expression was highly increased with increased autophagy and excessive macrophage inflammatory response. Next, we established a Hepa 1-6 cells and macrophage co-culture system in vitro to model the alteration of tumor microenvironment, and found that the medium from CCl4-treated or SIRT1-overexpressing Hepa 1-6 cells triggered the polarization of macrophage M1, and the culture medium derived from M1 macrophage promoted Hepa 1-6 cells growth and intracellular oxidative stress. The progression of liver fibrosis in the CCl4-induced liver fibrosis mouse model showed that inhibition of SIRT1 alleviated inflammatory response and ameliorated liver fibrosis. These findings suggest that SIRT1-regulated autophagy and inflammation are oncogenic in hepatocarcinogenesis.

16.
Oncoimmunology ; 13(1): 2376264, 2024.
Article in English | MEDLINE | ID: mdl-38988824

ABSTRACT

Functional roles of SIGLEC15 in hepatocellular carcinoma (HCC) were not clear, which was recently found to be an immune inhibitor with similar structure of inhibitory B7 family members. SIGLEC15 expression in HCC was explored in public databases and further examined by PCR analysis. SIGLEC15 and PD-L1 expression patterns were examined in HCC samples through immunohistochemistry. SIGLEC15 expression was knocked-down or over-expressed in HCC cell lines, and CCK8 tests were used to examine cell proliferative ability in vitro. Influences of SIGLEC15 expression on tumor growth were examined in immune deficient and immunocompetent mice respectively. Co-culture system of HCC cell lines and Jurkat cells, flow cytometry analysis of tumor infiltrated immune cells and further sequencing analyses were performed to investigate how SIGLEC15 could affect T cells in vitro and in vivo. We found SIGLEC15 was increased in HCC tumor tissues and was negatively correlated with PD-L1 in HCC samples. In vitro and in vivo models demonstrated inhibition of SIGLEC15 did not directly influence tumor proliferation. However, SIGLEC15 could promoted HCC immune evasion in immune competent mouse models. Knock-out of Siglec15 could inhibit tumor growth and reinvigorate CD8+ T cell cytotoxicity. Anti-SIGLEC15 treatment could effectively inhibit tumor growth in mouse models with or without mononuclear phagocyte deletion. Bulk and single-cell RNA sequencing data of treated mouse tumors demonstrated SIGLEC15 could interfere CD8+ T cell viability and induce cell apoptosis. In all, SIGLEC15 was negatively correlated with PD-L1 in HCC and mainly promote HCC immune evasion through inhibition of CD8+ T cell viability and cytotoxicity.


Subject(s)
Apoptosis , B7-H1 Antigen , CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Immunoglobulins , Liver Neoplasms , Membrane Proteins , Animals , Female , Humans , Male , Mice , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Proliferation , Immune Evasion , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Tumor Escape/genetics
17.
Clin Exp Pharmacol Physiol ; 51(7): e13901, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843867

ABSTRACT

Hepatocellular adenoma (HCA) represents a rare benign hepatic neoplasm with potential for malignant transformation into hepatocellular carcinoma (HCC), yet the underlying mechanism remains elusive. In this study, we investigated the genomic landscape of this process to identify therapeutic strategies for blocking malignant transformation. Using micro-detection techniques, we obtained specimens of adenoma, cancerous neoplasm and adjacent normal liver from three patients undergoing hepatic resection surgery. Whole-exome sequencing (WES) was performed, and genomic interactions between HCA and HCC components within the same tumour were evaluated using somatic variant calling, copy number variation (CNV) analysis, clonality evaluation and mutational signature analysis. Our results revealed genomic heterogeneity among patient cases, yet within each sample, HCA and HCC tissues exhibited a similar mutational landscape, suggesting a high degree of homology. Using nonnegative matrix factorization and phylogenetic trees, we identified shared and distinct mutational characteristics and uncovering necessary pathways associated with HCA-HCC malignant transformation. Remarkably, we found that HCA and HCC shared a common monoclonal origin while displaying significant genetic diversity within HCA-HCC tumours, indicating fundamental genetic connections or evolutionary pathways between the two. Moreover, elevated immune therapy-related markers in these patients suggested heightened sensitivity to immune therapy, providing novel avenues for the treatment of hepatic malignancies. This study sheds light on the genetic mechanisms underlying HCA-HCC progression, offering potential targets for therapeutic intervention and highlighting the promise of immune-based therapies in managing hepatic malignancies.


Subject(s)
Adenoma, Liver Cell , Carcinoma, Hepatocellular , Cell Transformation, Neoplastic , Exome Sequencing , Liver Neoplasms , Mutation , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/genetics , Adenoma, Liver Cell/genetics , Adenoma, Liver Cell/pathology , Male , Female , DNA Copy Number Variations , Middle Aged , DNA Mutational Analysis
18.
J Hazard Mater ; 474: 134837, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850945

ABSTRACT

Multi-component droplets from daily activities and production processes severely degrade indoor air quality. Their health hazards and removal efficiency depend on size and composition, significantly affected by evaporation and growth. The phase transition process is complex, involving a broad spectrum of droplet sizes with diverse heat and mass transfer characteristics. Components within the droplets experience simultaneous phase transitions at differing rates and mass transfer directions. This study aims to refine the existing evaporation model of single-component droplets in continuous flows by theoretically integrating the effects of varying droplet sizes and multiple components. A multi-component droplet evaporation/growth model that spans the entire range of droplet sizes has been developed, and predictions have been made based on this model. Utilizing MATLAB, this model accurately predicts the indoor dynamics of multi-component droplets, with deviations under 16 % from experiments. It improves accuracy by over 25 % across droplet sizes via dimensionless transfer coefficients and boosts precision by over 24 % for multi-component droplets with zero-diffusion transport. The radius of the droplet after phase change can reach 8.42 × 10-6 m and remains suspended in the air for an extended period. This study establishes a solid theoretical foundation for accurately predicting the indoor distribution of multi-component droplets.

19.
Qual Life Res ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907831

ABSTRACT

PURPOSE: This study was designed to synthesize the efficacy and safety of breathing exercises in interstitial lung disease (ILD) patients by reviewing the literature and comparing the impact of different control group types, ILD subtypes, breathing exercise action modes or methods, and intervention durations on clinical efficacy. METHODS: Systematic searches were conducted across 9 electronic databases, including PubMed, to retrieve English and Chinese studies reporting on ILD patients from inception to February 12, 2024. Study selection and data extraction were independently conducted by two researchers. The quality of the included studies was assessed using the Cochrane risk of bias tool. The data were analysed using RevMan 5.4 and STATA 17.0 software. RESULTS: The search identified 25 studies. Compared to the control group, the breathing exercise group exhibited significantly improved lung function (FVC%pred: MD = 3.46, 95%CI = 1.04 to 5.88; DLCO%pred: MD = 3.20, 95% CI = 2.91 to 3.48), dyspnoea (MRC or mMRC scale: MD = - 0.50, 95%CI = - 0.77 to - 0.22), exercise capacity (6MWD: MD = 32.65, 95% CI = 14.77 to 50.53), and HRQoL (SGRQ: MD = - 6.53, 95% CI = - 8.72 to - 4.34) in ILD patients. According to the subgroup analysis, significant improvements consistent with the overall results were observed in the control group with usual treatment. Compared with the control group, breathing exercises had varying degrees of improvement in the mixed diagnostic group, known-cause group, and fibrotic group of ILD patients; breathing exercises alone significantly improved DLCO%pred, MRC (or mMRC), and SGRQ; and the improvement in breathing exercises as part of pulmonary rehabilitation (PR) was more notable. Different durations of breathing exercise could promote the efficacy of different aspects of treatment for ILD patients. CONCLUSIONS: Compared with usual treatment, breathing exercises can improve lung function, exercise capacity, and HRQoL in ILD patients, particularly without high requirements for intervention duration. The efficacy of breathing exercises varies for different ILD subtypes, and incorporating breathing exercises as part of PR can be more beneficial for ILD patients. No studies have shown significant risks for ILD patients engaging in breathing exercises.

20.
Cell Death Discov ; 10(1): 304, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926350

ABSTRACT

Lymph node metastasis (LNM) facilitates distant tumor colonization and leads to the high mortality in patients with intrahepatic cholangiocarcinoma (ICC). However, it remains elusive how ICC cells subvert immune surveillance within the primary tumor immune microenvironment (TIME) and subsequently metastasize to lymph nodes (LNs). In this study, scRNA-seq and bulk RNA-seq analyses identified decreased infiltration of dendritic cells (DCs) into primary tumor sites of ICC with LNM, which was further validated via dual-color immunofluorescence staining of 219 surgically resected ICC samples. Tumor-infiltrating DCs correlated with increased CD8+ T cell infiltration and better prognoses in ICC patients. Mechanistically, ß-catenin-mediated CXCL12 suppression accounted for the impaired DC recruitment in ICC with LNM. Two mouse ICC cell lines MuCCA1 and mIC-23 cells were established from AKT/NICD or AKT/YAP-induced murine ICCs respectively and were utilized to construct the footpad tumor LNM model. We found that expansion and activation of conventional DCs (cDCs) by combined Flt3L and poly(I:C) (FL-pIC) therapy markedly suppressed the metastasis of mIC-23 cells to popliteal LNs. Moreover, ß-catenin inhibition restored the defective DC infiltration into primary tumor sites and reduced the incidence of LNM in ICC. Collectively, our findings identify tumor cell intrinsic ß-catenin activation as a key mechanism for subverting DC-mediated anti-tumor immunity in ICC with LNM. FL-pIC therapy or ß-catenin inhibitor could merit exploration as a potential regimen for mitigating ICC cell metastasis to LNs and achieving effective tumor immune control.

SELECTION OF CITATIONS
SEARCH DETAIL