Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Colloid Interface Sci ; 678(Pt B): 125-133, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39241443

ABSTRACT

Exquisitely tailoring the morphologies of photocatalysts could achieve high activities. In this study, the morphological transformation of bismuth oxyhalide (BiOX, X = Br, I and Cl) from disordered lamellae to regular flowers was facilely achieved via the use of carboxylated cellulose-derived carbon (CDC). The sphere-like structure and abundant surface functional groups of CDC induce the formation of such flower-like morphologies of BiOX/CDC, and this morphology results in a pronounced increase in surface area (e.g., the surface area of BiOBr increases from 3 to 106 m2 g-1) and porosity. Combined with the good light absorption and conductivity of CDC, the flower-like BiOX/CDC exhibited impressive photocatalytic activity under visible light. Regarding the probing Cr(VI) reduction reaction, the representative BiOBr/CDC is capable of reducing 98% of Cr(VI) within 30 min of visible-light illumination, which is markedly greater than those of pure BiOBr (6%) and CDC (16%). Likewise, BiOI/CDC and BiOCl/CDC also have decent photocatalytic Cr(VI) reduction capacities (89% for BiOI/CDC and 69% for BiOCl/CDC) under visible light in comparison with pristine BiOI (13%) and BiOCl (1.5%). This work furnishes a novel and facile approach to tune photocatalyst morphologies and sheds light on the great potential of biomass-derived carbon, which may enlighten the judicious design of photocatalysts with high efficiency.

2.
Small ; 20(38): e2403268, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38747023

ABSTRACT

Metal-organic framework derived materials received a lot of attention due to their significant benefits in photocatalytic reactions. In this work, a Z-scheme ZnIn2S4/Bi2S3 hierarchical heterojunction is first developed by a one-pot method using CAU-17 as a template. The specific preparation method endows an intimate interface contact between these two monomers, and CAU-17-derived Bi2S3 possesses a high surface area and porosity, resulting in an efficient charge separation and O2 capture. Thus, for photocatalytic H2O2 production from the O2 reduction reaction, the ZnIn2S4/Bi2S3 heterojunction can achieve an H2O2 yield of 995 µmol L-1 in pure water and ambient air under visible light, 4.5 and 4 times that of ZnIn2S4 and Bi2S3, respectively. In addition, in tetracycline solution, ZnIn2S4/Bi2S3 can degrade tetracycline with a degradation rate of 95% by photocatalysis, and at the same time, a final H2O2 production yield of 1223 µmol L-1 is reached. Similarly, high yields of H2O2 are also obtained from wastewater containing o-nitrophenol, acid golden yellow, or acid red, and these pollutants are effectively degraded. This work reveals the potential of metal-organic framework-derived materials in photocatalysis, as well as provides insights into H2O2 green synthesis and wastewater treatment.

SELECTION OF CITATIONS
SEARCH DETAIL