Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transl Res ; 14(2): 1234-1245, 2022.
Article in English | MEDLINE | ID: mdl-35273725

ABSTRACT

Di(2-ethylhexyl)phthalate (DEHP) is the most widely used phthalate to manufacture various plastic products. However, the potential effects of DEHP on erythropoiesis have not been investigated comprehensively. Here, we aimed to investigate whether DEHP modulated the function of hematopoietic stem and progenitor cells (HSPCs) to influence erythropoiesis, and to explore the associated mechanisms. In the present study, human cell lines with a capacity to differentiate into erythroid cells and murine bone marrow cells were treated with DEHP. DEHP not only impaired HSPC function, but also suppressed erythroid differentiation in a dose-dependent manner. In addition, DEHP removal restored HSPC activity. To explore how DEHP interfered with erythroid differentiation, we focused on energy metabolism and Klotho expression. DEHP suppressed erythroid differentiation via upregulating Klotho expression, while it did not via modulating cellular bioenergetics. Therefore, our results provided a novel insight into the pathophysiological link between phthalates and dysregulated erythroid differentiation.

2.
Mol Oncol ; 16(11): 2274-2294, 2022 06.
Article in English | MEDLINE | ID: mdl-35298869

ABSTRACT

Hepatocellular carcinoma (HCC) is characterized by rapid growth, early vascular invasion, and high metastasis. Currently available US Food and Drug Administration (FDA)-approved drugs show low therapeutic efficacy, limiting HCC treatment to chemotherapy. We designed and synthesized a novel small molecule, SCT-1015, that allosterically activated adenosine monophosphate-activated protein kinase (AMPK) to suppress the aerobic glycolysis in HCC. SCT-1015 was shown to bind the AMPK α and ß-subunit interface, thereby exposing the kinase α domain to the upstream kinases, resulting in the increased AMPK activity. SCT-1015 dramatically reduced HCC cell growth in vitro and tumor growth in vivo. We further found that AMPK formed protein complexes with hypoxia-inducible factor 1-alpha (HIF1α) and that SCT-1015-activated AMPK promoted hydroxylation of HIF1α (402P and 564P), resulting in HIF1α degradation by the ubiquitin-proteasome system. With declined HIF1α abundance, many glycolysis-related enzymes were downregulated, suppressing aerobic glycolysis, and promoting oxidative phosphorylation. These results indicated that SCT-1015 channeled HCC cells into an unfavorable metabolic status. Overall, we reported SCT-1015 as a direct activator of AMPK signaling that held therapeutic potential in HCC.


Subject(s)
AMP-Activated Protein Kinases , Antineoplastic Agents , Carcinoma, Hepatocellular , Glycolysis , Liver Neoplasms , AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/enzymology , Cell Line, Tumor , Enzyme Activation , Glycolysis/drug effects , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/enzymology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL