Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Colloid Interface Sci ; 675: 251-262, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38970911

ABSTRACT

Li-rich Mn-based (LMR) layered oxides are considered promising cathode materials for high energy-density Li-ion batteries. Nevertheless, challenges such as irreversible oxygen loss at the surface during the initial charge, alteration of the bulk structure, and poor rate performance impede their path to commercialisation. Most modification methods focus on specific layers, making the overall impact of modifications at various depths on the properties of materials unclear. This research presents an approach by using doping to adjust both surface and bulk properties; the materials with surface and bulk fluoride anion doping are synthesised to explore the connection between doping depth, structural and electrochemical stability. The surface-doped material significantly improves the initial Coulombic efficiency (ICE) from 77.85% to 85.12% and limits phase transitions, yet it does not enhance rate performance. Conversely, doping in bulk stands out by improving both rate performance and cyclic stability: it increases the specific discharge capacity by around 60 mAh g-1 and enhances capacity retention from 57.69% to 82.26% after 300 cycles at 5C. These results highlight a notable dependence of material properties on depth, providing essential insights into the mechanisms of surface and bulk modifications.

2.
Adv Mater ; 36(30): e2404360, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657134

ABSTRACT

The poor bulk-phase and interphase stability, attributable to adverse internal stress, impede the cycling performance of silicon microparticles (µSi) anodes and the commercial application for high-energy-density lithium-ion batteries. In this work, a groundbreaking gradient-hierarchically ordered conductive (GHOC) network structure, ingeniously engineered to enhance the stability of both bulk-phase and the solid electrolyte interphase (SEI) configurations of µSi, is proposed. Within the GHOC network architecture, two-dimensional (2D) transition metal carbides (Ti3C2Tx) act as a conductive "brick", establishing a highly conductive inner layer on µSi, while the porous outer layer, composed of one-dimensional (1D) Tempo-oxidized cellulose nanofibers (TCNF) and polyacrylic acid (PAA) macromolecule, functions akin to structural "rebar" and "concrete", effectively preserves the tightly interconnected conductive framework through multiple bonding mechanisms, including covalent and hydrogen bonds. Additionally, Ti3C2Tx enhances the development of a LiF-enriched SEI. Consequently, the µSi-MTCNF-PAA anode presents a high discharge capacity of 1413.7 mAh g-1 even after 500 cycles at 1.0 C. Moreover, a full cell, integrating LiNi0.8Mn0.1Co0.1O2 with µSi-MTCNF-PAA, exhibits a capacity retention rate of 92.0% following 50 cycles. This GHOC network structure can offer an efficacious pathway for stabilizing both the bulk-phase and interphase structure of anode materials with high volumetric strain.

3.
Angew Chem Int Ed Engl ; 63(13): e202318721, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38294414

ABSTRACT

Two-dimensional (2D) layered materials demonstrate prominent advantage in regulating lithium plating/stripping behavior by confining lithium diffusion/plating within interlayer gaps. However, achieving effective interlayer confined lithium diffusion/plating without compromising the stability of bulk-structural and the solid electrolyte interphase (SEI) remains a considerable challenge. This paper presents an electrochemical scissor and lithium zipper-driven protocol for realizing interlayer confined lithium plating with pretty-low strain and volume change. In this protocol, lithium serves as a "zipper" to reunite the adjacent MXene back to MAX-like phase to markedly enhance the structural stability, and a lithium halide-rich SEI is formed by electrochemically removing the terminals of halogenated MXenes to maintain the stability and rapid lithium ions diffusion of SEI. When the Ti3 C2 I2 serves as the host for lithium plating, the average coulomb efficiency exceeds 97.0 % after 320 lithium plating/stripping cycles in conventional ester electrolyte. Furthermore, a full cell comprising of LiNi0.8 Mn0.1 Co0.1 O2 and Ti3 C2 I2 @Li exhibits a capacity retention rate of 73.4 % after 200 cycles even under high cathode mass-loading (20 mg cm-2 ) and a low negative/positive capacity ratio of 1.4. Our findings advance the understanding of interlayer confined lithium plating in 2D layered materials and provide a new direction in regulating lithium and other metal plating/stripping behaviors.

4.
ChemSusChem ; 12(10): 2294-2301, 2019 May 21.
Article in English | MEDLINE | ID: mdl-30806010

ABSTRACT

Layered lithium-rich cathode materials are one of the most promising cathode materials owing to their higher mass energy density than the commercial counterparts. A series of trace Yb-doped lithium-rich cathode materials Li1.2 Mn0.54 Ni0.13 Co0.13-x Ybx O2 (0≤x≤0.050) were synthesized and the effects were investigated by XRD, X-ray photoelectron spectroscopy, and high-resolution TEM. The participation of Yb ions in electrochemical reactions and the larger binding energy of Yb-O than M-O (M=Mn, Ni, Co), which expands the lithium layer spacing and stabilizes the oxygen stacking, resulted in excellent performance of materials doped with a limited Yb content (x≤0.005). However, higher doping amounts (x>0.005) significantly increased the charge-transfer impedance and led to a sharp deterioration in electrochemical performance. The reason lies in the large difference in ionic radius between the transition metals (Mn, Co, and Ni) and Yb. There is an upper limit to the amount of Yb ions in the lattice. If the amount of Yb is higher than the limit, excess Yb ions enter the Li layers instead of staying in the transition-metal layers or even segregate on the surface and form electrochemically inert oxides.

SELECTION OF CITATIONS
SEARCH DETAIL