Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37873356

ABSTRACT

Mitochondrial dysfunction is thought to be a key component of neurodevelopmental disorders such as autism, intellectual disability, and ADHD. However, little is known about the molecular mechanisms that protect against mitochondrial dysfunction during neurodevelopment. Here, we address this question through the investigation of rbm-26 , the C. elegans ortholog of the RBM27 autism candidate gene, which encodes an RNA-binding protein whose role in neurons is unknown. We report that RBM-26 (RBM26/27) protects against neurodevelopmental defects by negatively regulating expression of the MALSU-1 mitoribosomal assembly factor. Autism-associated missense variants in RBM-26 cause a sharp decrease in RBM-26 protein expression along with neurodevelopmental defects, including errors in axon targeting and axon degeneration. Using an unbiased screen, we identified the mRNA for the MALSU-1 mitoribosomal assembly factor as a binding partner for RBM-26. RBM-26 negatively regulates the expression of malsu-1 mRNA and MALSU-1 protein, and genetic analysis indicates that this interaction is required to protect against neurodevelopmental defects. Moreover, biochemical evidence suggests that excess levels of MALSU-1 disrupt the biogenesis of mitoribosomes in rbm-26 mutants. These observations reveal a mechanism that can protect mitochochondrial function to prevent neurodevelopmental defects and suggest that disruptions in this process can cause neurodevelopmental disorders.

2.
Trends Cell Biol ; 32(9): 762-772, 2022 09.
Article in English | MEDLINE | ID: mdl-35466028

ABSTRACT

Translation factors have traditionally been viewed as proteins that drive ribosome function and ensure accurate mRNA translation. Recent discoveries have highlighted that these factors can also moonlight in gene regulation, but through functions distinct from their canonical roles in protein synthesis. Notably, the additional functions that translation factors encode are diverse, ranging from transcriptional control and extracellular signaling to RNA binding, and are highly regulated in response to external cues and the intrinsic cellular state. Thus, this multifunctionality of translation factors provides an additional mechanism for exquisite control of gene expression.


Subject(s)
Protein Biosynthesis , Ribosomes , Gene Expression Regulation , Humans , Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism
3.
J Mol Biol ; 434(10): 167564, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35358571

ABSTRACT

Translation factors are essential for regulation of protein synthesis. The eukaryotic translation initiation factor 5A (eIF5A) family is made up of two paralogues - eIF5A1 and eIF5A2 - which display high sequence homology but distinct tissue tropism. While eIF5A1 directly binds to the ribosome and regulates translation initiation, elongation, and termination, the molecular function of eIF5A2 remains poorly understood. Here, we engineer an eIF5A2 knockout allele in the SW480 colon cancer cell line. Using ribosome profiling and RNA-Sequencing, we reveal that eIF5A2 is functionally distinct from eIF5A1 and does not regulate transcript-specific or global protein synthesis. Instead, eIF5A2 knockout leads to decreased intrinsic antiviral gene expression, including members of the IFITM and APOBEC3 family. Furthermore, cells lacking eIF5A2 display increased permissiveness to virus infection. Our results uncover eIF5A2 as a factor involved regulating the antiviral transcriptome, and reveal an example of how gene duplications of translation factors can result in proteins with distinct functions.


Subject(s)
Eukaryotic Initiation Factor-5 , Gene Expression Regulation , Peptide Initiation Factors , RNA-Binding Proteins , Virus Diseases , APOBEC Deaminases/genetics , Cell Line, Tumor , Eukaryotic Initiation Factor-5/genetics , Eukaryotic Initiation Factor-5/metabolism , Gene Knockout Techniques , Humans , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcriptome , Virus Diseases/genetics , Eukaryotic Translation Initiation Factor 5A
4.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34779407

ABSTRACT

High expression of LIN28B is associated with aggressive malignancy and poor survival. Here, probing MYCN-amplified neuroblastoma as a model system, we showed that LIN28B expression was associated with enhanced cell migration in vitro and invasive and metastatic behavior in murine xenografts. Sequence analysis of the polyribosome fraction of LIN28B-expressing neuroblastoma cells revealed let-7-independent enrichment of transcripts encoding components of the translational and ribosomal apparatus and depletion of transcripts of neuronal developmental programs. We further observed that LIN28B utilizes both its cold shock and zinc finger RNA binding domains to preferentially interact with MYCN-induced transcripts of the ribosomal complex, enhancing their translation. These data demonstrated that LIN28B couples the MYCN-driven transcriptional program to enhanced ribosomal translation, thereby implicating LIN28B as a posttranscriptional driver of the metastatic phenotype.


Subject(s)
N-Myc Proto-Oncogene Protein/physiology , Neoplasm Metastasis , Neuroblastoma/pathology , RNA-Binding Proteins/physiology , Ribosomes/physiology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Neuroblastoma/etiology
5.
J Cell Sci ; 133(11)2020 06 03.
Article in English | MEDLINE | ID: mdl-32317396

ABSTRACT

γ-Tubulin is the main protein involved in the nucleation of microtubules in all eukaryotes. It forms two different complexes with proteins of the GCP family (γ-tubulin complex proteins): γ-tubulin small complexes (γTuSCs) that contain γ-tubulin, and GCPs 2 and 3; and γ-tubulin ring complexes (γTuRCs) that contain multiple γTuSCs in addition to GCPs 4, 5 and 6. Whereas the structure and assembly properties of γTuSCs have been intensively studied, little is known about the assembly of γTuRCs and the specific roles of GCPs 4, 5 and 6. Here, we demonstrate that two copies of GCP4 and one copy each of GCP5 and GCP6 form a salt (KCl)-resistant sub-complex within the γTuRC that assembles independently of the presence of γTuSCs. Incubation of this sub-complex with cytoplasmic extracts containing γTuSCs leads to the reconstitution of γTuRCs that are competent to nucleate microtubules. In addition, we investigate sequence extensions and insertions that are specifically found at the N-terminus of GCP6, and between the GCP6 grip1 and grip2 motifs. We also demonstrate that these are involved in the assembly or stabilization of the γTuRC.


Subject(s)
Microtubule-Associated Proteins , Tubulin , Centrosome , Microtubule-Associated Proteins/genetics , Microtubule-Organizing Center , Microtubules , Tubulin/genetics
6.
Open Biol ; 8(3)2018 03.
Article in English | MEDLINE | ID: mdl-29514869

ABSTRACT

Microtubules are major constituents of the cytoskeleton in all eukaryotic cells. They are essential for chromosome segregation during cell division, for directional intracellular transport and for building specialized cellular structures such as cilia or flagella. Their assembly has to be controlled spatially and temporally. For this, the cell uses multiprotein complexes containing γ-tubulin. γ-Tubulin has been found in two different types of complexes, γ-tubulin small complexes and γ-tubulin ring complexes. Binding to adaptors and activator proteins transforms these complexes into structural templates that drive the nucleation of new microtubules in a highly controlled manner. This review discusses recent advances on the mechanisms of assembly, recruitment and activation of γ-tubulin complexes at microtubule-organizing centres.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/metabolism , Tubulin/metabolism , Animals , Cell Division , Chromosome Segregation , Humans , Multiprotein Complexes/metabolism
7.
Sci Rep ; 6: 34255, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27694941

ABSTRACT

IL-33 is a nuclear cytokine from the IL-1 family that plays important roles in health and disease. Extracellular IL-33 activates a growing number of target cells, including group 2 innate lymphoid cells, mast cells and regulatory T cells, but it remains unclear whether intracellular nuclear IL-33 has additional functions in the nucleus. Here, we used a global proteomic approach based on high-resolution mass spectrometry to compare the extracellular and intracellular roles of IL-33 in primary human endothelial cells, a major source of IL-33 protein in human tissues. We found that exogenous extracellular IL-33 cytokine induced expression of a distinct set of proteins associated with inflammatory responses in endothelial cells. In contrast, knockdown of endogenous nuclear IL-33 expression using two independent RNA silencing strategies had no reproducible effect on the endothelial cell proteome. These results suggest that IL-33 acts as a cytokine but not as a nuclear factor regulating gene expression in endothelial cells.


Subject(s)
Cell Nucleus/metabolism , Endothelium, Vascular/metabolism , Extracellular Space/metabolism , Interleukin-33/physiology , Gene Knockdown Techniques , Gene Silencing , Human Umbilical Vein Endothelial Cells , Humans , Inflammation Mediators/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , RNA/genetics , Tandem Mass Spectrometry
8.
J Biol Chem ; 291(44): 23112-23125, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27660388

ABSTRACT

Microtubules are nucleated from multiprotein complexes containing γ-tubulin and associated γ-tubulin complex proteins (GCPs). Small complexes (γTuSCs) comprise two molecules of γ-tubulin bound to the C-terminal domains of GCP2 and GCP3. γTuSCs associate laterally into helical structures, providing a structural template for microtubule nucleation. In most eukaryotes γTuSCs associate with additional GCPs (4, 5, and 6) to form the core of the so-called γ-tubulin ring complex (γTuRC). GCPs 2-6 constitute a family of homologous proteins. Previous structural analysis and modeling of GCPs suggest that all family members can potentially integrate into the helical structure. Here we provide experimental evidence for this model. Using chimeric proteins in which the N- and C-terminal domains of different GCPs are swapped, we show that the N-terminal domains define the functional identity of GCPs, whereas the C-terminal domains are exchangeable. FLIM-FRET experiments indicate that GCP4 and GCP5 associate laterally within the complex, and their interaction is mediated by their N-terminal domains as previously shown for γTuSCs. Our results suggest that all GCPs are incorporated into the helix via lateral interactions between their N-terminal domains, whereas the C-terminal domains mediate longitudinal interactions with γ-tubulin. Moreover, we show that binding to γ-tubulin is not essential for integrating into the helical complex.


Subject(s)
Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Tubulin/chemistry , Tubulin/metabolism , Crystallography, X-Ray , Humans , Microtubule-Associated Proteins/genetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding , Protein Domains , Tubulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...