Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 366: 143447, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39362377

ABSTRACT

In this study, an iron metal-organic framework (Fe-MOF) was synthesized and immobilized by electrospinning technique with the objective of obtaining a membrane composed of nanofibers of this material (Fe-MOF nanofiber membrane). The characterization performed by XRD, TEM, SEM, EDS mapping and FTIR confirmed the correct synthesis of Fe-MOF as well as its correct retention in the elaborated membranes. The usefulness and effectiveness of the Fe-MOF nanofiber membrane as a catalyst for the electro-Fenton process was evaluated by performing sulfamethoxazole degradation tests. Different parameters such as the effect of intensity (25 and 100 mA), the effect of the drug initial concentration (10-50 mg/L) and the reusability of membranes were studied. Then, the degradation of a drug mixture formed by sulfamethoxazole and antipyrine was evaluated, reaching a degradation of 92.10 % and 87.43 % respectively for each drug in 4 h at 25 mA. In addition, the identification of reactive oxygen species was ascertained by scavenger assays. The study of degradation products was also carried out and their toxicity was predicted by ECOSAR program, concluding that the environmental toxicity would disappear with mineralization. Finally, given the good results obtained in batch tests, the behavior of the process was studied in a system that works continuously, achieving a stable degradation of 83.10 % in the case of treatment with a mixture of drugs. This confirmed the stability of the Fe-MOF nanofiber membrane, as well as, its catalytic activity, making it suitable for long-term treatments.

2.
Article in English | MEDLINE | ID: mdl-37853214

ABSTRACT

A series of bimetallic of FeCu metal-organic frameworks (MOFs) have been synthesised using a solvothermal process by varying the ratio between the two metals. Further, the bimetallic MOF catalysts were characterised by X-ray powder diffraction, scanning electron microscopy, and infrared spectroscopy techniques. Their catalytic properties for activation of peroxymonosulphate (PMS) have been tested by the removal of a model dye, rhodamine B. As a result, NH2-Fe2.4Cu1-MOF demonstrated the highest degradation, the effect of the ratio NH2-Fe2.4Cu1-MOF/PMS has been studied, and the main reactive species have been assessed. The application of these MOFs in powder form is difficult to handle in successive batch or flow systems. Thus, this study assessed the feasibility of growing NH2-Fe2,4Cu1-MOF on polyacrylonitrile (PAN) spheres using the one-pot solvothermal synthesis method. The optimisation of the catalytic activity of the synthesised composite (NH2-Fe2.4Cu1-MOF@PAN) has been evaluated by response surface methodology using a central composite face-centred experimental design matrix and selecting as independent variables: time, PMS concentration, and catalyst dosage. Based on the results, the optimisation of the operational conditions has been validated. At 2.5 mM PMS, 90 min, and 1.19 g·L-1 of catalyst dosage, maximum degradation (80.92%) has been achieved, which doubles the removal values obtained in previous studies with other MOFs. In addition, under these conditions, the catalyst has been proven to maintain its activity and stability for several cycles without activity loss.

3.
Article in English | MEDLINE | ID: mdl-37670094

ABSTRACT

In recent years, the presence of pathogens in the environment has become an issue of widespread concern in society. Thus, new research lines have been developed regarding the removal of pathogens and persistent pollutants in water. In this research, the efficacy of nanostructure copper-organic framework, HKUST-1, has been evaluated for its ability to eliminate Escherichia coli and generate sulphate radicals as catalyst for the treatment of effluents with a high microbiological load via peroxymonosulphate (PMS) activation. The disinfection process has been optimized, achieving complete elimination of Escherichia coli growth after 30 min of testing using a concentration of 60.5 mg/L HKUST-1 and 0.1 mM of PMS. To overcome the operational limitations of this system and facilitate its handling and reutilization in a flow disinfection process, HKUST-1 has been efficiently encapsulated on polyacrylonitrile as a novel development that could be scaled up to achieve continuous treatment.

4.
Chemosphere ; 340: 139942, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37634590

ABSTRACT

In recent years, heterogeneous electro-Fenton processes have gained considerable attention as an alternative to homogeneous processes. In this context, the aim of this study is the use of a commercial iron metal-organic framework (Fe-MOF), Basolite® F-300, as a base material for the design of a heterogeneous electro-Fenton treatment system for the removal of antipyrine. Initially, the catalyst was applied as powder in aqueous solution and three key parameters of the electro-Fenton process (pH, Fe-MOF concentration and current density) were evaluated and optimized by a Central Composite Design Face Centred (CCD-FC) using antipyrine removal and energy consumption as response functions. Near complete antipyrine removal (94%) was achieved under optimal conditions: pH 3, Fe-MOF 157.78 mg/L and current density 6.67 mA/cm2, obtaining an energy consumption of 0.29 W·h per mg of antipyrine removed. Later, two electrocatalysts (Fe-MOF functionalized cathodes), prepared by different Fe-MOF immobilisation approaches (composite of carbon black/polytetrafluoroethylene or by electrospinning on Ni foam), were synthesized. Their characterisation showed notable Fe-MOF incorporation into the material and favourable properties as electrocatalysts. Both Fe-MOF functionalized cathodes were evaluated in the removal of antipyrine at different pH (acidic and natural) and current density (27.78 and 55.56 mA/cm2), achieving in the best conditions removal levels around 80% in 1 h without any operational problems. In addition, several intermediates generated during the treatment were identified and their toxicity estimated. According to the obtained results, the degradation compounds have less toxicity than the parent compounds, confirming the effectiveness of the treatment.


Subject(s)
Antipyrine , Metal-Organic Frameworks , Electrodes , Iron , Powders
5.
Article in English | MEDLINE | ID: mdl-35682435

ABSTRACT

In this study, the removal of persistent emerging and dangerous pollutants (pharmaceuticals and pathogens) in synthetic wastewater was evaluated by the application of heterogeneous Advanced Oxidation Processes. To do that, a Metal-Organic Framework (MOF), Basolite® F-300 was selected as a catalyst and combined with peroxymonosulfate (PMS) as oxidants in order to generate sulphate radicals. Several key parameters such as the PMS and Basolite® F-300 concentration were evaluated and optimized using a Central Composite Experimental Design for response surface methodology for the inactivation of Escherichia coli. The assessment of the degradation of an analgesic and antipyretic pharmaceutical, antipyrine, revealed that is necessary to increase the concentration of PMS and amount of Basolite® F-300, in order to diminish the treatment time. Finally, the PMS-Basolite® F-300 system can be used for at least four cycles without a reduction in its ability to disinfect and degrade persistent emerging and dangerous pollutants such as pharmaceuticals and pathogens.


Subject(s)
Disinfection , Water Pollutants, Chemical , Antipyrine , Escherichia coli , Oxidation-Reduction , Peroxides , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL