Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Genet ; 15: 1331278, 2024.
Article in English | MEDLINE | ID: mdl-38596211

ABSTRACT

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic condition with complete age-dependent penetrance, variable expressivity and a global prevalence of ∼1/3,000. It is characteriszed by numerous café-au-lait macules, skin freckling in the inguinal or axillary regions, Lisch nodules of the iris, optic gliomas, neurofibromas, and tumour predisposition. The diagnostic testing strategy for NF1 includes testing for DNA single nucleotide variants (SNVs), copy number variants (CNVs) as well as RNA analysis for deep intronic and splice variants, which can cumulatively identify the causative variant in 95% of patients. In the present study, NF1 patients were screened using a next-generation sequencing (NGS) assay targeting NF1 exons and intron/exon boundaries for SNV and NF1 multiple ligation-dependent probe amplification (MLPA) analysis for CNV detection. Twenty-six unrelated Southern African patients clinically suspected of having NF1, based on the clinical diagnostic criteria developed by the National Institute of Health (NIH), were included in the current study. A detection rate of 58% (15/26) was obtained, with SNVs identified in 80% (12/15) using a targeted gene panel and NF1 gene deletion in 20% (3/15) identified using MLPA. Ten patients (38%) had no variants identified, although they met NF1 diagnostic criteria. One VUS was identified in this study in a patient that met NF1 diagnostic criteria, however there was no sufficient information to classify variant as pathogenic. The clinical features of Southern African patients with NF1 are similar to that of the known NF1 phenotype, with the exception of a lower frequency of plexiform neurofibromas and a higher frequency of developmental/intellectual disability compared to other cohorts. This is the first clinical and molecular characterisation of a Southern African ancestry NF1 cohort using both next-generation sequencing and MLPA analysis. A significant number of patients remained without a diagnosis following DNA-level testing. The current study offers a potential molecular testing strategy for our low resource environment that could benefit a significant proportion of patients who previously only received a clinical diagnosis without molecular confirmation.

2.
Mol Genet Genomic Med ; 12(1): e2342, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38284454

ABSTRACT

BACKGROUND: Cornelia de Lange Syndrome (CdLS) presents with a variable multi-systemic phenotype and pathogenic variants have been identified in five main genes. This condition has been understudied in African populations with little phenotypic and molecular information available. METHODS AND RESULTS: We present a cohort of 14 patients with clinical features suggestive of CdLS. Clinical phenotyping was carried out and cases were classified according to the international consensus criteria. According to this criteria, nine patients had classical CdLS, one had non-classical CdLS and four presented with a phenotype that suggested molecular testing for CdLS. Each patient underwent mutation profiling using a targeted next generation sequencing panel of 18 genes comprising known and suspected CdLS causal genes. Of the 14 patients tested, pathogenic and likely pathogenic variants were identified in nine: eight variants in the NIPBL gene and one in the STAG1 gene. CONCLUSIONS: We present the first molecular data for a cohort of South African patients with CdLS. Eight of the nine variants identified were in the NIPBL gene, the most commonly involved gene in cases of CdLS. This is also the first report of a patient of African ancestry presenting with STAG1-related CdLS.


Subject(s)
Cell Cycle Proteins , De Lange Syndrome , Humans , Cell Cycle Proteins/genetics , De Lange Syndrome/genetics , De Lange Syndrome/pathology , South Africa , Mutation , Phenotype
3.
J Community Genet ; 15(1): 39-48, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37815686

ABSTRACT

Timely and accurate diagnosis of rare genetic disorders is critical, as it enables improved patient management and prognosis. In a resource-constrained environment such as the South African State healthcare system, the challenge is to design appropriate and cost-effective assays that will enable accurate genetic diagnostic services in patients of African ancestry across a broad disease spectrum. Next-generation sequencing (NGS) has transformed testing approaches for many Mendelian disorders, but this technology is still relatively new in our setting and requires cost-effective ways to implement. As a proof of concept, we describe a feasible diagnostic strategy for genetic disorders frequently seen in our genetics clinics (RASopathies, Cornelia de Lange syndrome, Treacher Collins syndrome, and CHARGE syndrome). The custom-designed targeted NGS gene panel enabled concurrent variant screening for these disorders. Samples were batched during sequencing and analyzed selectively based on the clinical phenotype. The strategy employed in the current study was cost-effective, with sequencing and analysis done at USD849.68 per sample and achieving an overall detection rate of 54.5%. The strategy employed is cost-effective as it allows batching of samples from patients with different diseases in a single run, an approach that can be utilized with rare and less frequently ordered molecular diagnostic tests. The subsequent selective analysis pipeline allowed for timeous reporting back of patients results. This is feasible with a reasonable yield and can be employed for the molecular diagnosis of a wide range of rare monogenic disorders in a resource-constrained environment.

4.
Mol Genet Genomic Med ; 9(10): e1797, 2021 10.
Article in English | MEDLINE | ID: mdl-34499417

ABSTRACT

BACKGROUND: KCNMA1 mutations have recently been associated with a wide range of dysmorphological, gastro-intestinal, cardiovascular, and neurological manifestations. METHODS: Whole exome sequencing was performed in order to identify the underlying pathogenic mutation in two cases presenting with diverse phenotypical manifestations that did not fit into well-known clinical entities. RESULTS: In an 8-year-old boy presenting with severe aortic dilatation, facial dysmorphism, and overgrowth at birth a de novo p.Gly375Arg KCNMA1 mutation was identified which has been reported previously in association with gingival hypertrophy, aortic dilatation, and developmental delay. Additionally, in a 30-week-old fetus with severe growth retardation and duodenal atresia a de novo p.Pro805Leu KCNMA1 mutation was identified. The latter has also been reported before in a boy with severe neurological manifestations, including speech delay, developmental delay, and cerebellar dysfunction. CONCLUSION: The current report presents the first antenatal presentation of a pathogenic KCNMA1 mutation and confirms the specific association of the p.Gly375Arg variant with early onset aortic root dilatation, gingival hypertrophy, and neonatal overgrowth.


Subject(s)
Channelopathies/diagnosis , Channelopathies/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Phenotype , Adolescent , Alleles , Amino Acid Substitution , Child , Child, Preschool , Genetic Association Studies/methods , Humans , Infant , Male , Mutation , Neuroimaging , Tomography, X-Ray Computed , Ultrasonography , Exome Sequencing , Young Adult
5.
Clin Case Rep ; 9(4): 2144-2148, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33936654

ABSTRACT

First reported case of Takenouchi-Kosaki syndrome in an African patient with a de novo likely pathogenic missense variant identified in the CDC42 gene.

6.
Mol Genet Genomic Med ; 8(8): e1351, 2020 08.
Article in English | MEDLINE | ID: mdl-32529760

ABSTRACT

BACKGROUND: Fanconi anemia (FA) is phenotypically diverse, hereditary condition associated with bone marrow failure, multiple physical abnormalities, and an increased susceptibility to the development of malignancies. Less recognized manifestations of FA include endocrine abnormalities. International discourse has highlighted that these abnormalities are widespread among children and adults with FA. To date there has been no systematic study that has evaluated the endocrine abnormalities in a cohort of patients with FA, homozygous for a founder mutation (c.637_643del (p.Tyr213Lysfs*6)) in FANCG. The objectives of the study were to evaluate endocrine gland function in patients with FA of a single FA genotype, and to determine the frequency and nature of endocrine abnormalities in this group. METHODS: Cross-sectional, descriptive study of 24 South African patients of African ancestry with FA (homozygous for a FANCG founder mutation). Outcomes measured included growth, pubertal status, growth hormone axis screening, thyroid gland function, glucose and insulin metabolism and bone age (BA). RESULTS: Endocrine dysfunction was present in 70.8% (17 of 24), including abnormal insulin-like growth factor 1 (IGF-1)/insulin-like growth factor-binding protein 3 (IGFBP-3) in 25.0% (6 of 24), insulin resistance in 41.7% (10 of 24), abnormal thyroid function in 16.7% (4 of 24) and short stature in 45.8% (11 of 24). No abnormalities of glucose metabolism were identified. Abnormal pubertal status was seen in three males (12.5%). Abnormal BAs were present in 34.8% (8 of 23). CONCLUSION: Endocrine abnormalities occur at a high frequency in patients with FA, homozygous for a FANCG founder mutation, similar to other FA cohorts. Our data are specific to FA patients with a single genotype, and therefore provide the first genotype-phenotype information on endocrine abnormalities in South African patients, homozygous for a FANCG founder mutation. Recommendations regarding endocrine screening in this patient subgroup are made, including, but not limited to, baseline testing of thyroid function, fasted insulin and glucose, and IGF-1 and IGFBP-3.


Subject(s)
Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia/genetics , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor I/metabolism , Insulin/blood , Mutation , Thyroid Hormones/blood , Adolescent , Black People/genetics , Blood Glucose/metabolism , Child , Child, Preschool , Fanconi Anemia/blood , Fanconi Anemia/pathology , Female , Founder Effect , Homozygote , Humans , Male , Puberty/genetics , South Africa
7.
Fam Cancer ; 16(3): 441-446, 2017 07.
Article in English | MEDLINE | ID: mdl-28185119

ABSTRACT

Fanconi anaemia (FA) is a genotypically and phenotypically heterogeneous genetic condition, characterized cytogenetically by chromosomal instability and breakage secondary to impaired DNA repair mechanisms. Affected individuals typically manifest growth restriction and congenital physical abnormalities and most progress to hematological disease including bone marrow aplasia. A rare genetic subtype of FA (FA-D1) is caused by biallelic mutations in the BRCA2 gene. Affected individuals manifest severe congenital anomalies and significant pigmentary changes and are additionally at risk for early onset leukemia and certain solid organ malignancies, including Wilms tumors and brain tumors. Parents of affected individuals are obligate carriers for heterozygous BRCA2 mutations and are thus potentially at risk for adult onset cancers which fall within the hereditary breast and ovarian cancer spectrum. We present two cases of black South African patients with FA diagnosed with biallelic BRCA2 mutations and discuss the phenotypic consequences and implications for them and their families. Recognition of this severe end of the phenotypic spectrum of FA is critical in allowing for confirmation of the diagnosis as well as cascade screening and appropriate care of family members.


Subject(s)
BRCA2 Protein/genetics , Fanconi Anemia/genetics , Genetic Predisposition to Disease/genetics , Child, Preschool , Female , Genes, BRCA2 , Humans , Infant , Infant, Newborn , Male , Mutation , Pedigree , South Africa
8.
Blood Cells Mol Dis ; 54(3): 270-4, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25477267

ABSTRACT

Fanconi anemia (FA) is a rare disorder of DNA repair, associated with various somatic abnormalities but characterized by hematological disease that manifests as bone marrow aplasia and malignancy. The mainstay of treatment, in developed nations, is hematopoietic stem cell transplantation (HSCT) with subsequent surveillance for solid organ and non-hematological malignancies. In South Africa, FA in the Black population is caused by a homozygous deletion mutation in the FANCG gene in more than 80% of cases. Many affected patients are not diagnosed until late in the disease course when severe cytopenia and bone marrow aplasia are already present. Most patients are not eligible for HSCT at this late stage of the disease, even when it is available in the state health care system. In this study, the hematological presentation and disease progression in 30 Black South African patients with FA, confirmed to have the FANCG founder mutation, were evaluated and compared to those described in other FA cohorts. Our results showed that patients, homozygous for the FANCG founder mutation, present with severe cytopenia but progress to bone marrow failure at similar ages to other individuals affected with FA of heterogeneous genotype. Further, the incidence of myelodysplastic syndrome is similar to that which has been previously described in other FA cohorts. Although severe cytopenia at presentation may be predicted by a higher number of somatic anomalies, the recognition of the physical FA phenotype in Black South African patients is challenging and may not be useful in expediting referral of suspected FA patients for tertiary level investigations and care. Given the late but severe hematological presentation of FA in Black South African patients, an investigative strategy is needed for earlier recognition of affected individuals to allow for possible HSCT and management of bone marrow disease.


Subject(s)
Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia/blood , Fanconi Anemia/genetics , Sequence Deletion , Adolescent , Black People/genetics , Child , Child, Preschool , Cohort Studies , Fanconi Anemia/epidemiology , Fanconi Anemia/therapy , Female , Hematopoietic Stem Cell Transplantation , Homozygote , Humans , Male , Middle Aged , South Africa/epidemiology
9.
Genet Med ; 16(5): 400-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24136620

ABSTRACT

PURPOSE: Fanconi anemia is a genotypically and phenotypically heterogeneous condition, characterized microscopically by chromosomal instability and breakage. Affected individuals manifest growth restriction and congenital physical abnormalities; most progress to hematological disease including bone marrow aplasia. Black South African Fanconi anemia patients share a common causative founder mutation in the Fanconi G gene in 80% of cases (637_643delTACCGCC). The aim of this study was to investigate the genotype-physical phenotype correlation in a cohort of individuals homozygous for this mutation. METHODS: Thirty-five black patients were recruited from tertiary level hematology/oncology clinics in South Africa. Participants were subjected to a comprehensive clinical examination, documenting growth, congenital anomalies, and phenotypic variability. RESULTS: Descriptive statistical analysis showed significant growth abnormalities in many patients and a high frequency (97%) of skin pigmentary anomalies. Subtle anomalies of the eyes, ears, and hands occurred frequently (≥70%). Apart from malformations of the kidney (in 37%) and gastrointestinal tract (in 8.5%), congenital anomalies of other systems including the cardiovascular and central nervous systems, genitalia, and vertebrae were infrequent (<5%). CONCLUSION: The diagnosis of Fanconi anemia in black South African patients before the onset of hematological symptoms remains a clinical challenge, with the physical phenotype unlikely to be recognized by those without dysmorphology expertise.


Subject(s)
Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia/diagnosis , Fanconi Anemia/genetics , Adolescent , Black People/genetics , Child , Child, Preschool , Ear/abnormalities , Eye Abnormalities/genetics , Founder Effect , Gastrointestinal Tract/abnormalities , Hand Deformities, Congenital , Humans , Kidney/abnormalities , Mutation , Phenotype , Skin Pigmentation/genetics , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...