Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Pharmacol Toxicol Methods ; 128: 107529, 2024.
Article in English | MEDLINE | ID: mdl-38857637

ABSTRACT

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) have found utility for conducting in vitro drug screening and disease modelling to gain crucial insights into pharmacology or disease phenotype. However, diseases such as atrial fibrillation, affecting >33 M people worldwide, demonstrate the need for cardiac subtype-specific cells. Here, we sought to investigate the base characteristics and pharmacological differences between commercially available chamber-specific atrial or ventricular hiPSC-CMs seeded onto ultra-thin, flexible PDMS membranes to simultaneously measure contractility in a 96 multi-well format. We investigated the effects of GPCR agonists (acetylcholine and carbachol), a Ca2+ channel agonist (S-Bay K8644), an HCN channel antagonist (ivabradine) and K+ channel antagonists (4-AP and vernakalant). We observed differential effects between atrial and ventricular hiPSC-CMs on contractile properties including beat rate, beat duration, contractile force and evidence of arrhythmias at a range of concentrations. As an excerpt of the compound analysis, S-Bay K8644 treatment showed an induced concentration-dependent transient increase in beat duration of atrial hiPSC-CMs, whereas ventricular cells showed a physiological increase in beat rate over time. Carbachol treatment produced marked effects on atrial cells, such as increased beat duration alongside a decrease in beat rate over time, but only minimal effects on ventricular cardiomyocytes. In the context of this chamber-specific pharmacology, we not only add to contractile characterization of hiPSC-CMs but propose a multi-well platform for medium-throughput early compound screening. Overall, these insights illustrate the key pharmacological differences between chamber-specific cardiomyocytes and their application on a multi-well contractility platform to gain insights for in vitro cardiac liability studies and disease modelling.


Subject(s)
Heart Atria , Heart Ventricles , Induced Pluripotent Stem Cells , Myocardial Contraction , Myocytes, Cardiac , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Humans , Induced Pluripotent Stem Cells/drug effects , Heart Atria/drug effects , Heart Atria/cytology , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Heart Ventricles/drug effects , Heart Ventricles/cytology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/agonists , Drug Development/methods , Ion Channels/drug effects , Cells, Cultured , Drug Evaluation, Preclinical/methods , Carbachol/pharmacology , Microphysiological Systems
2.
Comput Methods Programs Biomed ; 254: 108293, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936153

ABSTRACT

BACKGROUND AND OBJECTIVE: Assessment of drug cardiotoxicity is critical in the development of new compounds and modeling of drug-binding dynamics to hERG can improve early cardiotoxicity assessment. We previously developed a methodology to generate Markovian models reproducing preferential state-dependent binding properties, trapping dynamics and the onset of IKr block using simple voltage clamp protocols. Here, we test this methodology with real IKr blockers and investigate the impact of drug dynamics on action potential prolongation. METHODS: Experiments were performed on HEK cells stably transfected with hERG and using the Nanion SyncroPatch 384i. Three protocols, P-80, P0 and P 40, were applied to obtain the experimental data from the drugs and the Markovian models were generated using our pipeline. The corresponding static models were also generated and a modified version of the O´Hara-Rudy action potential model was used to simulate the action potential duration. RESULTS: The experimental Hill plots and the onset of IKr block of ten compounds were obtained using our voltage clamp protocols and the models generated successfully mimicked these experimental data, unlike the CiPA dynamic models. Marked differences in APD prolongation were observed when drug effects were simulated using the dynamic models and the static models. CONCLUSIONS: These new dynamic models of ten well-known IKr blockers constitute a validation of our methodology to model dynamic drug-hERG channel interactions and highlight the importance of state-dependent binding, trapping dynamics and the time-course of IKr block to assess drug effects even at the steady-state.


Subject(s)
Action Potentials , Humans , Action Potentials/drug effects , HEK293 Cells , ERG1 Potassium Channel/metabolism , ERG1 Potassium Channel/antagonists & inhibitors , Patch-Clamp Techniques , Protein Binding , Potassium Channel Blockers/pharmacology
3.
J Vis Exp ; (188)2022 10 20.
Article in English | MEDLINE | ID: mdl-36342136

ABSTRACT

Cardiac contractility assessment is of immense importance for the development of new therapeutics and their safe transition into clinical stages. While human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold promise to serve as a human-relevant model in preclinical phases of drug discovery and safety pharmacology, their maturity is still controversial in the scientific community and under constant development. We present a hybrid contractility and impedance/extracellular field potential (EFP) technology, adding significant pro-maturation features to an industry-standard 96-well platform. The impedance/EFP system monitors cellular functionality in real-time. Besides the beat rate of contractile cells, the electrical impedance spectroscopy readouts detect compound-induced morphological changes like cell density and integrity of the cellular monolayer. In the other component of the hybrid cell analysis system, the cells are cultured on bio-compliant membranes that mimic the mechanical environment of real heart tissue. This physiological environment supports the maturation of hiPSC-CMs in vitro, leading to more adult-like contractile responses including positive inotropic effects after treatment with isoproterenol, S-Bay K8644, or omecamtiv mecarbil. Parameters such as the amplitude of contraction force (mN/mm2) and beat duration also reveal downstream effects of compounds with influence on electrophysiological properties and calcium handling. The hybrid system provides the ideal tool for holistic cell analysis, allowing preclinical cardiac risk assessment beyond the current perspectives of human-relevant cell-based assays.


Subject(s)
Induced Pluripotent Stem Cells , Adult , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myocardial Contraction , Electrophysiological Phenomena , Hybrid Cells , Cells, Cultured
4.
New Phytol ; 232(4): 1692-1702, 2021 11.
Article in English | MEDLINE | ID: mdl-34482538

ABSTRACT

Plant stress signalling involves bursts of reactive oxygen species (ROS), which can be mimicked by the application of acute pulses of ozone. Such ozone-pulses inhibit photosynthesis and trigger stomatal closure in a few minutes, but the signalling that underlies these responses remains largely unknown. We measured changes in Arabidopsis thaliana gas exchange after treatment with acute pulses of ozone and set up a system for simultaneous measurement of membrane potential and cytosolic calcium with the fluorescent reporter R-GECO1. We show that within 1 min, prior to stomatal closure, O3 triggered a drop in whole-plant CO2 uptake. Within this early phase, O3 pulses (200-1000 ppb) elicited simultaneous membrane depolarization and cytosolic calcium increase, whereas these pulses had no long-term effect on either stomatal conductance or photosynthesis. In contrast, pulses of 5000 ppb O3 induced cell death, systemic Ca2+ signals and an irreversible drop in stomatal conductance and photosynthetic capacity. We conclude that mesophyll cells respond to ozone in a few seconds by distinct pattern of plasma membrane depolarizations accompanied by an increase in the cytosolic calcium ion (Ca2+ ) level. These responses became systemic only at very high ozone concentrations. Thus, plants have rapid mechanism to sense and discriminate the strength of ozone signals.


Subject(s)
Ozone , Calcium , Mesophyll Cells , Ozone/pharmacology , Photosynthesis , Plant Leaves , Plant Stomata
5.
J Pharmacol Toxicol Methods ; 112: 107125, 2021.
Article in English | MEDLINE | ID: mdl-34500078

ABSTRACT

INTRODUCTION: For reliable identification of cardiac safety risk, compounds should be screened for activity on cardiac ion channels in addition to hERG, including NaV1.5 and CaV1.2. We identified different parameters that might affect IC50s of compounds on NaV1.5 peak and late currents recorded using automated patch clamp (APC) and suggest outlines for best practices. METHODS: APC instruments SyncroPatch 384 and Patchliner were used to record NaV1.5 peak and late current. Up to 24 CiPA compounds were used to investigate effects of voltage protocol, holding potential (-80 mV or - 95 mV) and temperature (23 ± 1 °C or 36 ± 1 °C) on IC50 values on hNaV1.5 overexpressed in HEK or CHO cells either as frozen cells or running cultures. RESULTS: The IC50s of 18 compounds on the NaV1.5 peak current recorded on the SyncroPatch 384 using the CiPA step-ramp protocol correlated well with the literature. The use of frozen or cultured cells did not affect IC50s but voltage protocol and holding potential did cause differences in IC50 values. Temperature can affect Vhalf of inactivation and also compound potency. A compound incubation time of 5-6 min was sufficient for most compounds, however slow acting compounds such as terfenadine required longer to reach maximum effect. DISCUSSION: We conclude that holding potential, voltage protocol and temperature can affect IC50 values and recommend the use of the CiPA step-ramp protocol at physiological temperature to record NaV1.5 peak and late currents for cardiac safety. Further recommendations include: a minimum compound incubation time of 5 min, a replicate number of 4 and the use of positive and negative controls for reliable IC50s.


Subject(s)
Cardiac Conduction System Disease , Drug Discovery , High-Throughput Screening Assays , Animals , CHO Cells , Cardiac Conduction System Disease/diagnosis , Cricetinae , Cricetulus , NAV1.5 Voltage-Gated Sodium Channel , Patch-Clamp Techniques
6.
Regul Toxicol Pharmacol ; 117: 104756, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32822771

ABSTRACT

Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.


Subject(s)
Adult Stem Cells/drug effects , Arrhythmias, Cardiac/chemically induced , Cardiotoxins/toxicity , Myocytes, Cardiac/drug effects , Practice Guidelines as Topic/standards , Validation Studies as Topic , Adult Stem Cells/pathology , Adult Stem Cells/physiology , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Humans , Membrane Potentials/drug effects , Membrane Potentials/physiology , Myocytes, Cardiac/pathology
8.
J Pharmacol Toxicol Methods ; 105: 106892, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32629160

ABSTRACT

INDUCTION: Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. With the presented study, we aimed at validating the newly developed FLEXcyte96 technology with respect to physiological responses of hiPSC-CMs to pharmacological compounds with known inotropic and/or cardiotoxic effects. METHODS: hiPSC-CMs were cultured in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment. Cardiomyocyte contractility was measured contact-free by application of capacitive displacement sensing of the cell-membrane biohybrids. Acute effects of positive inotropic compounds with distinct mechanisms of action were examined. Additionally, cardiotoxic effects of tyrosine kinase inhibitors and anthracyclines were repetitively examined during repeated exposure to drug concentrations for up to 5 days. RESULTS: hiPSC-CMs grown on biomimetic membranes displayed increased contractility responses to isoproterenol, S-Bay K8644 and omecamtiv mecarbil without the need for additional stimulation. Tyrosine kinase inhibitor erlotinib, vandetanib, nilotinib, gefitinib, A-674563 as well as anthracycline idarubicin showed the expected cardiotoxic effects, including negative inotropy and induction of proarrhythmic events. DISCUSSION: We conclude that the FLEXcyte 96 system is a reliable high throughput tool for invitro cardiac contractility research, providing the user with data obtained under physiological conditions which resemble the native environment of human heart tissue. We showed that the results obtained for both acute and sub-chronic compound administration are consistent with the respective physiological responses in humans.


Subject(s)
Cardiotoxicity/diagnosis , High-Throughput Screening Assays/methods , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Anthracyclines/adverse effects , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/drug effects , Protein Kinase Inhibitors/adverse effects
9.
J Pharmacol Toxicol Methods ; 105: 106890, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32574700

ABSTRACT

INTRODUCTION: In response to the ongoing shift of the regulatory cardiac safety paradigm, a recent White Paper proposed general principles for developing and implementing proarrhythmia risk prediction models. These principles included development strategies to validate models, and implementation strategies to ensure a model developed by one lab can be used by other labs in a consistent manner in the presence of lab-to-lab experimental variability. While the development strategies were illustrated through the validation of the model under the Comprehensive In vitro Proarrhythmia Assay (CiPA), the implementation strategies have not been adopted yet. METHODS: The proposed implementation strategies were applied to the CiPA model by performing a sensitivity analysis to identify a subset of calibration drugs that were most critical in determining the classification thresholds for proarrhythmia risk prediction. RESULTS: The selected calibration drugs were able to recapitulate classification thresholds close to those calculated from the full list of CiPA drugs. Using an illustrative dataset it was shown that a new lab could use these calibration drugs to establish its own classification thresholds (lab-specific calibration), and verify that the model prediction accuracy in the new lab is comparable to that in the original lab where the model was developed (lab-specific validation). DISCUSSION: This work used the CiPA model as an example to illustrate how to adopt the proposed model implementation strategies to select calibration drugs and perform lab-specific calibration and lab-specific validation. Generic in nature, these strategies could be generally applied to different proarrhythmia risk prediction models using various experimental systems under the new paradigm.


Subject(s)
Arrhythmias, Cardiac/chemically induced , Biological Assay/methods , Drug-Related Side Effects and Adverse Reactions/prevention & control , Myocytes, Cardiac/drug effects , Pharmaceutical Preparations/administration & dosage , Calibration , Drug Evaluation, Preclinical/methods , Electrocardiography/methods , Humans
10.
J Pharmacol Toxicol Methods ; 105: 106884, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32565325

ABSTRACT

INTRODUCTION: Screening compounds for activity on the hERG channel using patch clamp is a crucial part of safety testing. Automated patch clamp (APC) is becoming widely accepted as an alternative to manual patch clamp in order to increase throughput whilst maintaining data quality. In order to standardize APC experiments, we have investigated the effects on IC50 values under different conditions using several devices across multiple sites. METHODS: APC instruments SyncroPatch 384i, SyncroPatch 384PE and Patchliner, were used to record hERG expressed in HEK or CHO cells. Up to 27 CiPA compounds were used to investigate effects of voltage protocol, incubation time, labware and time between compound preparation and experiment on IC50 values. RESULTS: All IC50 values of 21 compounds recorded on the SyncroPatch 384PE correlated well with IC50 values from the literature (Kramer et al., 2013) regardless of voltage protocol or labware, when compounds were used immediately after preparation, but potency of astemizole decreased if prepared in Teflon or polypropylene (PP) compound plates 2-3 h prior to experiments. Slow acting compounds such as dofetilide, astemizole, and terfenadine required extended incubation times of at least 6 min to reach steady state and therefore, stable IC50 values. DISCUSSION: Assessing the influence of different experimental conditions on hERG assay reliability, we conclude that either the step-ramp protocol recommended by CiPA or a standard 2-s step-pulse protocol can be used to record hERG; a minimum incubation time of 5 min should be used and although glass, Teflon, PP or polystyrene (PS) compound plates can be used for experiments, caution should be taken if using Teflon, PS or PP vessels as some adsorption can occur if experiments are not performed immediately after preparation. Our recommendations are not limited to the APC devices described in this report, but could also be extended to other APC devices.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Benchmarking/methods , Cardiovascular Agents/pharmacology , Drug Discovery/methods , Heart/drug effects , Patch-Clamp Techniques/methods , Animals , Arrhythmias, Cardiac/metabolism , Astemizole/pharmacology , CHO Cells , Calibration , Cardiovascular Agents/chemistry , Cell Line , Cricetulus , Drug Evaluation, Preclinical/methods , ERG1 Potassium Channel/metabolism , HEK293 Cells , Humans , Phenethylamines/pharmacology , Polypropylenes/chemistry , Polytetrafluoroethylene/chemistry , Reference Standards , Reproducibility of Results , Sulfonamides/pharmacology , Terfenadine/pharmacology
12.
Toxicol Appl Pharmacol ; 394: 114961, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32209365

ABSTRACT

INTRODUCTION: hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. METHODS: A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. RESULTS: A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. DISCUSSION: This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.


Subject(s)
ERG1 Potassium Channel/antagonists & inhibitors , Risk Assessment/methods , Torsades de Pointes/chemically induced , Bayes Theorem , Computer Simulation , Humans , Models, Biological , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Safety , Torsades de Pointes/physiopathology
13.
Sci Rep ; 10(1): 5627, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221320

ABSTRACT

Automated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC50 values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug's cardiac safety margin. We determined variability of APC data from multiple sites that measured blocking potency of 12 blinded drugs (with different levels of proarrhythmic risk) against four human cardiac currents (hERG [IKr], hCav1.2 [L-Type ICa], peak hNav1.5, [Peak INa], late hNav1.5 [Late INa]) with recommended protocols (to minimize variance) using five APC platforms across 17 sites. IC50 variability (25/75 percentiles) differed for drugs and currents (e.g., 10.4-fold for dofetilide block of hERG current and 4-fold for mexiletine block of hNav1.5 current). Within-platform variance predominated for 4 of 12 hERG blocking drugs and 4 of 6 hNav1.5 blocking drugs. hERG and hNav1.5 block. Bland-Altman plots depicted varying agreement across APC platforms. A follow-up survey suggested multiple sources of experimental variability that could be further minimized by stricter adherence to standard protocols. Adoption of best practices would ensure less variable APC datasets and improved safety margins and proarrhythmic risk assessments.

14.
Article in English | MEDLINE | ID: mdl-29940218

ABSTRACT

INTRODUCTION: Since 2005 the S7B and E14 guidances from ICH and FDA have been in place to assess a potential drug candidate's ability to cause long QT syndrome. To refine these guidelines, the FDA proposed the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, where the assessment of drug effects on cardiac repolarization was one subject of investigation. Within the myocyte validation study, effects of pharmaceutical compounds on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were assessed and this article will focus on the evaluation of the proarrhythmic potential of 23 blinded drugs in four hiPSC-CM cell lines. METHODS: Experiments were performed on the CardioExcyte 96 at different sites. A combined readout of contractility (via impedance) and electrophysiology endpoints (field potentials) was performed. RESULTS: Our data demonstrates that hERG blockers such as dofetilide and further high risk categorized compounds prolong the field potential duration. Arrhythmia were detected in both impedance as well as field potential recordings. Intermediate risk compounds induced arrhythmia in almost all cases at the highest dose. In the case of low risk compounds, either a decrease in FPDmax was observed, or not a significant change from pre-addition control values. DISCUSSION: With exceptions, hiPSC-CMs are sensitive and exhibit at least 10% delayed or shortened repolarization from pre-addition values and arrhythmia after drug application and thus can provide predictive cardiac electrophysiology data. The baseline electrophysiological parameters vary between iPS cells from different sources, therefore positive and negative control recordings are recommended.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Electric Impedance , Excitation Contraction Coupling/drug effects , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Action Potentials/drug effects , Action Potentials/physiology , Cell Line , Cells, Cultured , Disopyramide/pharmacology , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Excitation Contraction Coupling/physiology , Humans , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Phenethylamines/pharmacology , Potassium Channel Blockers/pharmacology , Sulfonamides/pharmacology
15.
Br J Pharmacol ; 175(14): 3007-3020, 2018 07.
Article in English | MEDLINE | ID: mdl-29722437

ABSTRACT

BACKGROUND AND PURPOSE: Oxycodone is a potent semi-synthetic opioid that is commonly used for the treatment of severe acute and chronic pain. However, treatment with oxycodone can lead to cardiac electrical changes, such as long QT syndrome, potentially inducing sudden cardiac arrest. Here, we investigate whether the cardiac side effects of oxycodone can be explained by modulation of the cardiac Nav 1.5 sodium channel. EXPERIMENTAL APPROACH: Heterologously expressed human Nav 1.5, Nav 1.7 (HEK293 cells) or Nav 1.8 channels (mouse N1E-115 cells) were used for whole-cell patch-clamp electrophysiology. A variety of voltage-clamp protocols were used to test the effect of oxycodone on different channel gating modalities. Human stem cell-derived cardiomyocytes were used to measure the effect of oxycodone on cardiomyocyte beating. KEY RESULTS: Oxycodone inhibited Nav 1.5 channels, concentration and use-dependently, with an IC50 of 483 µM. In addition, oxycodone slows recovery of Nav 1.5 channels from fast inactivation and increases slow inactivation. At high concentrations, these effects lead to a reduced beat rate in cardiomyocytes and to arrhythmia. In contrast, no such effects could be observed on Nav 1.7 or Nav 1.8 channels. CONCLUSIONS AND IMPLICATIONS: Oxycodone leads to an accumulation of Nav 1.5 channels in inactivated states, with a slow time course. Although the concentrations needed to elicit cardiac arrhythmias in vitro are relatively high, some patients under long-term treatment with oxycodone as well as drug abusers and addicts might suffer from severe cardiac side effects induced by the slowly developing effects of oxycodone on Nav 1.5 channels.


Subject(s)
Analgesics, Opioid/pharmacology , Myocytes, Cardiac/drug effects , NAV1.5 Voltage-Gated Sodium Channel/physiology , Oxycodone/pharmacology , Sodium Channel Blockers/pharmacology , Animals , Cell Line , Humans , Mice , Myocytes, Cardiac/physiology
16.
Expert Opin Drug Discov ; 13(3): 269-277, 2018 03.
Article in English | MEDLINE | ID: mdl-29343120

ABSTRACT

INTRODUCTION: Automated patch clamp (APC) devices have become commonplace in many industrial and academic labs. Their ease-of-use and flexibility have ensured that users can perform routine screening experiments and complex kinetic experiments on the same device without the need for months of training and experience. APC devices are being developed to increase throughput and flexibility. Areas covered: Experimental options such as temperature control, internal solution exchange and current clamp have been available on some APC devices for some time, and are being introduced on other devices. A comprehensive review of the literature pertaining to these features for the Patchliner, QPatch and Qube and data for these features for the SyncroPatch 384/768PE, is given. In addition, novel features such as dynamic clamp on the Patchliner and light stimulation of action potentials using channelrhodosin-2 is discussed. Expert opinion: APC devices will continue to play an important role in drug discovery. The instruments will be continually developed to meet the needs of HTS laboratories and for basic research. The use of stem cells and recordings in current clamp mode will increase, as will the development of complex add-ons such as dynamic clamp and optical stimulation on high throughput devices.


Subject(s)
Drug Discovery/methods , High-Throughput Screening Assays/methods , Ion Channels/metabolism , Animals , Drug Design , Humans , Patch-Clamp Techniques/methods
17.
Front Physiol ; 8: 1094, 2017.
Article in English | MEDLINE | ID: mdl-29403387

ABSTRACT

An important aspect of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) proposal is the use of human stem cell-derived cardiomyocytes and the confirmation of their predictive power in drug safety assays. The benefits of this cell source are clear; drugs can be tested in vitro on human cardiomyocytes, with patient-specific genotypes if needed, and differentiation efficiencies are generally excellent, resulting in a virtually limitless supply of cardiomyocytes. There are, however, several challenges that will have to be surmounted before successful establishment of hSC-CMs as an all-round predictive model for drug safety assays. An important factor is the relative electrophysiological immaturity of hSC-CMs, which limits arrhythmic responses to unsafe drugs that are pro-arrhythmic in humans. Potentially, immaturity may be improved functionally by creation of hybrid models, in which the dynamic clamp technique joins simulations of lacking cardiac ion channels (e.g., IK1) with hSC-CMs in real-time during patch clamp experiments. This approach has been used successfully in manual patch clamp experiments, but throughput is low. In this study, we combined dynamic clamp with automated patch clamp of iPSC-CMs in current clamp mode, and demonstrate that IK1 conductance can be added to iPSC-CMs on an automated patch clamp platform, resulting in an improved electrophysiological maturity.

18.
Toxicol Sci ; 154(1): 174-182, 2016 11.
Article in English | MEDLINE | ID: mdl-27503387

ABSTRACT

Drug-drug interactions pose a difficult drug safety problem, given the increasing number of individuals taking multiple medications and the relative complexity of assessing the potential for interactions. For example, sofosbuvir-based drug treatments have significantly advanced care for hepatitis C virus-infected patients, yet recent reports suggest interactions with amiodarone may cause severe symptomatic bradycardia and thus limit an otherwise extremely effective treatment. Here, we evaluated the ability of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) to recapitulate the interaction between sofosbuvir and amiodarone in vitro, and more generally assessed the feasibility of hiPSC-CMs as a model system for drug-drug interactions. Sofosbuvir alone had negligible effects on cardiomyocyte electrophysiology, whereas the sofosbuvir-amiodarone combination produced dose-dependent effects beyond that of amiodarone alone. By comparison, GS-331007, the primary circulating metabolite of sofosbuvir, had no effect alone or in combination with amiodarone. Further mechanistic studies revealed that the sofosbuvir-amiodarone combination disrupted intracellular calcium (Ca2+) handling and cellular electrophysiology at pharmacologically relevant concentrations, and mechanical activity at supra-pharmacological (30x Cmax) concentrations. These effects were independent of the common mechanisms of direct ion channel block and P-glycoprotein activity. These results support hiPSC-CMs as a comprehensive, yet scalable model system for the identification and evaluation of cardioactive pharmacodynamic drug-drug interactions.


Subject(s)
Amiodarone/toxicity , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Sofosbuvir/toxicity , Drug Interactions , Humans
19.
J Pharmacol Toxicol Methods ; 81: 223-32, 2016.
Article in English | MEDLINE | ID: mdl-27084108

ABSTRACT

INTRODUCTION: While extracellular field potential (EFP) recordings using multi-electrode arrays (MEAs) are a well-established technique for monitoring changes in cardiac and neuronal function, impedance is a relatively unexploited technology. The combination of EFP, impedance and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has important implications for safety pharmacology as functional information about contraction and field potentials can be gleaned from human cardiomyocytes in a beating monolayer. The main objectives of this study were to demonstrate, using a range of different compounds, that drug effects on contraction and electrophysiology can be detected using a beating monolayer of hiPSC-CMs on the CardioExcyte 96. METHODS: hiPSC-CMs were grown as a monolayer on NSP-96 plates for the CardioExcyte 96 (Nanion Technologies) and recordings were made in combined EFP and impedance mode at physiological temperature. The effect of the hERG blockers, E4031 and dofetilide, hERG trafficking inhibitor, pentamidine, ß-adrenergic receptor agonist, isoproterenol, and calcium channel blocker, nifedipine, was tested on the EFP and impedance signals. RESULTS: Combined impedance and EFP measurements were made from hiPSC-CMs using the CardioExcyte 96 (Nanion Technologies). E4031 and dofetilide, known to cause arrhythmia and Torsades de Pointes (TdP) in humans, decreased beat rate in impedance and EFP modes. Early afterdepolarization (EAD)-like events, an in vitro marker of TdP, could also be detected using this system. Isoproterenol and nifedipine caused an increase in beat rate. A long-term study (over 30h) of pentamidine, a hERG trafficking inhibitor, showed a concentration and time-dependent effect of pentamidine. DISCUSSION: In the light of the new Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative to improve guidelines and standardize assays and protocols, the use of EFP and impedance measurements from hiPSCs may become critical in determining the proarrhythmic risk of potential drug candidates. The combination of EFP offering information about cardiac electrophysiology, and impedance, providing information about contractility from the same area of a synchronously beating monolayer of human cardiomyocytes in a 96-well plate format has important implications for future cardiac safety testing.


Subject(s)
Action Potentials/drug effects , Cardiography, Impedance/drug effects , Extracellular Space/drug effects , Adrenergic beta-Antagonists/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Calcium Channel Blockers/pharmacology , Cell Culture Techniques , Ether-A-Go-Go Potassium Channels/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Potassium Channel Blockers/pharmacology , Torsades de Pointes/chemically induced , Torsades de Pointes/physiopathology
20.
Heart Rhythm ; 13(6): 1335-45, 2016 06.
Article in English | MEDLINE | ID: mdl-26854997

ABSTRACT

BACKGROUND: Propionic acidemia (PROP) is a rare metabolic disorder caused by deficiency of propionyl-CoA carboxylase. PROP patients demonstrate QT prolongations associated with ventricular tachycardia and syncopes. Mechanisms responsible for this acquired long QT syndrome (acqLQTS) are unknown. OBJECTIVE: The aim of the study was to investigate acute and chronic effects of metabolites accumulating in PROP patients on major repolarizing potassium currents (IKs and IKr) and their channel subunits. METHODS: Voltage clamp studies were performed in CHO-KCNQ1/KCNE1 or HEK-KCNH2 cells to determine effects of propionic acid (PA; 1-10 mM), propionylcarnitine (PC; 25 µM-10 mM), methylcitrate (MC; 25 µM-10 mM), 0.2 M phosphate buffer (PB), or patient serum on IKs and IKr currents. Metabolite effects on action potentials were recorded in current clamp mode in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Protein expression of α- and ß-subunits of IKs (KCNQ1/KCNE1) and IKr (KCNH2) was evaluated with Western blots. RESULTS: Acute application of PA, PC, MC, and patient serum had no direct effect on net IKr densities (and KCNH2 expression), although it changed IKr gating kinetics. In contrast, PA, PC, MC, and patient serum all reduced IKs-tail (-67% ± 4.2%, -27% ± 6.7%, -16% ± 6.3%, -42.8% ± 5.15; P < .001) and IKs-end pulse currents. PA significantly prolonged action potential duration (APD) in hiPSC-CM and QT interval in wild-type but not in LQT1 rabbits lacking IKs. Moreover, PC and MC (1 mM) decreased KCNQ1 protein expression (relative density: 0.58 ± 0.08 and 0.16 ± 0.05; P < .01). Chronic exposure to 10 mM PA, in contrast, increased KCNQ1 5.4-fold (P < .001) owing to decreased protein degradation. CONCLUSION: Acute reduction of IKs by PROP metabolites may be responsible for APD prolongation and acqLQTS observed in PROP patients.


Subject(s)
Methylmalonyl-CoA Decarboxylase/metabolism , Propionic Acidemia , Animals , Heart Conduction System/metabolism , Heart Conduction System/physiopathology , Humans , Induced Pluripotent Stem Cells/metabolism , Long QT Syndrome/diagnosis , Long QT Syndrome/etiology , Long QT Syndrome/physiopathology , Potassium Channels, Voltage-Gated/metabolism , Propionic Acidemia/complications , Propionic Acidemia/metabolism , Propionic Acidemia/physiopathology , Rabbits , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL