Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(15): e34798, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145030

ABSTRACT

Pakistan is facing energy crises due to localized shortages, market manipulation, infrastructure disruption, rising demand, governance issues, climate and geopolitical events. In this situation Demand Side Management (DSM) is a promising solution to overcome the problem of energy crises. DSM strategy helps to manage consumer demand through energy conservation rather than to addition of new power capacity. In this study, Low Emissions Analysis Platform (LEAP) develops an energy model for Pakistan for the period 2022-2050. Three scenarios has been to constructed namely Baseline (BAS), Green Energy Policy (GEP), and Energy Efficiency (ENE) to predict the future energy demand, production, carbon emissions and the investment cost which covers capital, operational and maintenance costs. The model results suggest that DSM targets should be achieved through the implementation of ENE scenario. Predicted energy production and consumption under the ENE scenario are substantially less than those under the BAS scenario. The country can meet its 635.83,000 GWh energy demand with its 747.15,000 GWh energy production. Non-renewable sources produce 171.27,000 GWh, whilst renewable sources produce 575.88,000 GWh. According to this scenario, by 2050, CO2 emissions will be produced around 93.16 million metric tons, requiring an investment cost of $46.80 billion for building new power capacity. The study provides a roadmap with a suggestive optimal balance between energy saving with DSM approach and utilizing renewable energy production to meet energy demand for different sectors of the economy.

2.
Heliyon ; 10(11): e31850, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882359

ABSTRACT

This study introduces the Worst Moth Disruption Strategy (WMFO) to enhance the Moth Fly Optimization (MFO) algorithm, specifically addressing challenges related to population stagnation and low diversity. The WMFO aims to prevent local trapping of moths, fostering improved global search capabilities. Demonstrating a remarkable efficiency of 66.6 %, WMFO outperforms the MFO on CEC15 benchmark test functions. The Friedman and Wilcoxon tests further confirm WMFO's superiority over state-of-the-art algorithms. Introducing a hybrid model, WMFO-MLP, combining WMFO with a Multi-Layer Perceptron (MLP), facilitates effective parameter tuning for carbon emission prediction, achieving an outstanding total accuracy of 97.8 %. Comparative analysis indicates that the MLP-WMFO model surpasses alternative techniques in precision, reliability, and efficiency. Feature importance analysis reveals that variables such as Oil Efficiency and Economic Growth significantly impact MLP-WMFO's predictive power, contributing up to 40 %. Additionally, Gas Efficiency, Renewable Energy, Financial Risk, and Political Risk explain 26.5 %, 13.6 %, 8 %, and 6.5 %, respectively. Finally, WMFO-MLP performance offers advancements in optimization and predictive modeling with practical applications in carbon emission prediction.

3.
Heliyon ; 10(6): e27771, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38524577

ABSTRACT

Marine renewable energy is regarded as a nascent renewable energy resource that is less utilized due to a number of challenges in the sector. This paper focused on using both traditional and bibliometric analysis approaches to review the marine energy industry. It also assessed the various opportunities and challenges in the sector beyond technological challenges using PESTEL analysis. The results from the study identified the availability of renewable energy targets, international and national greenhouse gas (GHG) emissions reduction targets, job creation, skill transfer from offshore industries, renewable support, and low GHG emissions as the major opportunities for the sector. The challenges in the sector include the lack of commonality in device designs, high initial capital costs, lack of appropriate legal and regulatory frameworks, lack of funding, fragmentations in regulatory institutions, bad macro-economic indicators in some countries, environmental challenges, the survivability of the various technologies in the harsh oceanic environment, and strong competition from other renewable energy sources. The outcome of the bibliometric analysis spanning from 2013 to 2023 shows that tidal power is the focus of research in the field, and most studies are either focused on ways to improve its efficiency in terms of technology or on the identification of resource potentials for the siting of the various marine renewable power systems. Recommendations such as strong cooperation between the government and private sector, increased public education, collaboration with existing players in the marine sector, and increased research and development, among others, were proposed for the development of the sector.

4.
Heliyon ; 10(4): e26366, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38434047

ABSTRACT

In this article, an improved optimization technique is used to get a solution to the problem of coordination between directional overcurrent relays (DOCR) and distance relays. An enhanced version of an equilibrium optimization algorithm (EO), referred to as EEO is proposed to solve this problem. The suggested approach optimises the parameter that regulates the balance between exploration and exploitation to identify the potential optimum solution while enhancing the EO algorithm's exploration properties. The main task for the EEO is to get the best settings. Also, the proposed algorithm shall maintain operation in sequence between the main and backup relays. The capability of the suggested EEO algorithm is assessed in 8-bus, IEEE thirty-bus, and IEEE 39-bus systems. The obtained results prove the effectiveness of the EEO technique in solving the coordination problem of the combined directional overcurrent relays and distance relays. Also, the results show the ability of the suggested algorithm to overcome the drawbacks of the traditional EO algorithm and achieve faster protection (the reduction ratio reaches about 12 % compared to the traditional EO.

5.
Heliyon ; 10(2): e24192, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293420

ABSTRACT

The FOX algorithm is a recently developed metaheuristic approach inspired by the behavior of foxes in their natural habitat. While the FOX algorithm exhibits commendable performance, its basic version, in complex problem scenarios, may become trapped in local optima, failing to identify the optimal solution due to its weak exploitation capabilities. This research addresses a high-dimensional feature selection problem. In feature selection, the most informative features are retained while discarding irrelevant ones. An enhanced version of the FOX algorithm is proposed, aiming to mitigate its drawbacks in feature selection. The improved approach referred to as S-shaped Grey Wolf Optimizer-based FOX (FOX-GWO), which focuses on augmenting the local search capabilities of the FOX algorithm via the integration of GWO. Additionally, the introduction of an S-shaped transfer function enables the population to explore both binary options throughout the search process. Through a series of experiments on 18 datasets with varying dimensions, FOX-GWO outperforms in 83.33 % of datasets for average accuracy, 61.11 % for reduced feature dimensionality, and 72.22 % for average fitness value across the 18 datasets. Meaning it efficiently explores high-dimensional spaces. These findings highlight its practical value and potential to advance feature selection in complex data analysis, enhancing model prediction accuracy.

6.
Heliyon ; 9(10): e20635, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37867878

ABSTRACT

Aerosols have a severe impact on the Earth's climate, human health, and ecosystem. To understand the impacts of aerosols on climate, human health, and the ecosystem we must need to understand the variability of aerosols and their optical properties. Therefore, we used Aqua-MODIS retrieved aerosol optical depth (AOD) (550 nm) and Angstrom exponent (AE) (440/870) data to analyze the Spatio-temporal seasonal variability of aerosols and their relationship with different meteorological parameters over Pakistan from 2002 to 2021. High (>0.5) AOD values were observed during the summer season and low (<0.8) in the spring season. AE values were observed to be high (>1) in the northern regions of Pakistan indicating the dominance of fine mode particles during the winter season. Moreover, AOD showed a positive correlation with Relative Humidity (RH), Evapotranspiration, Wind speed (WS), and Temperature. On the other hand, it showed a negative correlation with Soil moisture (SM), Normalized difference vegetation index (NDVI), and precipitation over Pakistan. Therefore, considering the outcomes of this study will help policymakers to understand the spatiotemporal variability of aerosols and their seasonal correlation with different meteorological parameters.

SELECTION OF CITATIONS
SEARCH DETAIL