Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Amino Acids ; 50(6): 711-721, 2018 06.
Article in English | MEDLINE | ID: mdl-29626301

ABSTRACT

Oropouche virus (OROV) is the unique known human pathogen belonging to serogroup Simbu of Orthobunyavirus genus and Bunyaviridae family. OROV is transmitted by wild mosquitoes species to sloths, rodents, monkeys and birds in sylvatic environment, and by midges (Culicoides paraensis and Culex quinquefasciatus) to man causing explosive outbreaks in urban locations. OROV infection causes dengue fever-like symptoms and in few cases, can cause clinical symptoms of aseptic meningitis. OROV contains a tripartite negative RNA genome encapsidated by the viral nucleocapsid protein (NP), which is essential for viral genome encapsidation, transcription and replication. Here, we reported the first study on the structural properties of a recombinant NP from human pathogen Oropouche virus (OROV-rNP). OROV-rNP was successfully expressed in E. coli in soluble form and purified using affinity and size-exclusion chromatographies. Purified OROV-rNP was analyzed using a series of biophysical tools and molecular modeling. The results showed that OROV-rNP formed stable oligomers in solution coupled with endogenous E. coli nucleic acids (RNA) of different sizes. Finally, electron microscopy revealed a total of eleven OROV-rNP oligomer classes with tetramers (42%) and pentamers (43%) the two main populations and minor amounts of other bigger oligomeric states, such as hexamers, heptamers or octamers. The different RNA sizes and nucleotide composition may explain the diversity of oligomer classes observed. Besides, structural differences among bunyaviruses NP can be used to help in the development of tools for specific diagnosis and epidemiological studies of this group of viruses.


Subject(s)
Genome, Viral , Nucleoproteins/chemistry , Protein Multimerization , RNA, Viral/chemistry , Simbu virus/chemistry , Viral Proteins/chemistry , Humans , Nucleoproteins/genetics , Nucleoproteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Simbu virus/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
2.
Intervirology ; 55(5): 349-55, 2012.
Article in English | MEDLINE | ID: mdl-22057164

ABSTRACT

OBJECTIVE: In order to gain further insight into the function of the enteric adenovirus short fiber (SF), we have constructed a recombinant dodecahedron containing the SF protein of HAdV-41 and the HAdV-3 penton base. METHODS: Recombinant baculoviruses expressing the HAdV-41 SF protein and HAdV-3 penton base were cloned and amplified in Sf9 insect cells. Recombinant dodecahedra were expressed by coinfection of High Five™ cells with both baculoviruses, 72 h post-infection. Cell lysate was centrifuged on sucrose density gradient and the purified recombinant dodecahedra were recovered. RESULTS: Analysis by negative staining electron microscopy demonstrated that chimeric dodecahedra made of the HAdV-3 penton base and decorated with the HAdV-41 SF were successfully generated. Next, recombinant dodecahedra were digested with pepsin and analyzed by Western blot. A 'site-specific' proteolysis of the HAdV-41 SF was observed, while the HAdV-3 penton base core was completely digested. CONCLUSION: These results show that, in vitro, the HAdV-41 SF likely undergoes proteolysis in the gastrointestinal tract, its natural environment, which may facilitate the recognition of receptors in intestinal cells. The results obtained in the present study may be the basis for the development of gene therapy vectors towards the intestinal epithelium, as well as orally administered vaccine vectors, but also for the HAdV-41 SF partner identification.


Subject(s)
Adenoviruses, Human/genetics , Capsid Proteins/genetics , Capsid Proteins/ultrastructure , Macromolecular Substances/ultrastructure , Virosomes/genetics , Virosomes/ultrastructure , Animals , Baculoviridae/genetics , Capsid Proteins/metabolism , Cell Line , Cloning, Molecular , Genetic Vectors , Insecta , Macromolecular Substances/metabolism , Microscopy, Electron , Pepsin A , Protein Multimerization , Proteolysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Virosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL