Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Netw Open ; 7(3): e241933, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38470418

ABSTRACT

Importance: Adolescent major depressive disorder (MDD) is associated with serious adverse implications for brain development and higher rates of self-injury and suicide, raising concerns about its neurobiological mechanisms in clinical neuroscience. However, most previous studies regarding the brain alterations in adolescent MDD focused on single-modal images or analyzed images of different modalities separately, ignoring the potential role of aberrant interactions between brain structure and function in the psychopathology. Objective: To examine alterations of structural and functional connectivity (SC-FC) coupling in adolescent MDD by integrating both diffusion magnetic resonance imaging (MRI) and resting-state functional MRI data. Design, Setting, and Participants: This cross-sectional study recruited participants aged 10 to 18 years from January 2, 2020, to December 28, 2021. Patients with first-episode MDD were recruited from the outpatient psychiatry clinics at The First Affiliated Hospital of Chongqing Medical University. Healthy controls were recruited by local media advertisement from the general population in Chongqing, China. The sample was divided into 5 subgroup pairs according to different environmental stressors and clinical characteristics. Data were analyzed from January 10, 2022, to February 20, 2023. Main Outcomes and Measures: The SC-FC coupling was calculated for each brain region of each participant using whole-brain SC and FC. Primary analyses included the group differences in SC-FC coupling and clinical symptom associations between SC-FC coupling and participants with adolescent MDD and healthy controls. Secondary analyses included differences among 5 types of MDD subgroups: with or without suicide attempt, with or without nonsuicidal self-injury behavior, with or without major life events, with or without childhood trauma, and with or without school bullying. Results: Final analyses examined SC-FC coupling of 168 participants with adolescent MDD (mean [mean absolute deviation (MAD)] age, 16.0 [1.7] years; 124 females [73.8%]) and 101 healthy controls (mean [MAD] age, 15.1 [2.4] years; 61 females [60.4%]). Adolescent MDD showed increased SC-FC coupling in the visual network, default mode network, and insula (Cohen d ranged from 0.365 to 0.581; false discovery rate [FDR]-corrected P < .05). Some subgroup-specific alterations were identified via subgroup analyses, particularly involving parahippocampal coupling decrease in participants with suicide attempt (partial η2 = 0.069; 90% CI, 0.025-0.121; FDR-corrected P = .007) and frontal-limbic coupling increase in participants with major life events (partial η2 ranged from 0.046 to 0.068; FDR-corrected P < .05). Conclusions and Relevance: Results of this cross-sectional study suggest increased SC-FC coupling in adolescent MDD, especially involving hub regions of the default mode network, visual network, and insula. The findings enrich knowledge of the aberrant brain SC-FC coupling in the psychopathology of adolescent MDD, underscoring the vulnerability of frontal-limbic SC-FC coupling to external stressors and the parahippocampal coupling in shaping future-minded behavior.


Subject(s)
Adverse Childhood Experiences , Depressive Disorder, Major , Female , Humans , Adolescent , Depressive Disorder, Major/diagnostic imaging , Cross-Sectional Studies , Depression , Brain/diagnostic imaging
2.
Biol Psychiatry ; 95(9): 828-838, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38151182

ABSTRACT

BACKGROUND: Environmental exposures play a crucial role in shaping children's behavioral development. However, the mechanisms by which these exposures interact with brain functional connectivity and influence behavior remain unexplored. METHODS: We investigated the comprehensive environment-brain-behavior triple interactions through rigorous association, prediction, and mediation analyses, while adjusting for multiple confounders. Particularly, we examined the predictive power of brain functional network connectivity (FNC) and 41 environmental exposures for 23 behaviors related to cognitive ability and mental health in 7655 children selected from the Adolescent Brain Cognitive Development (ABCD) Study at both baseline and follow-up. RESULTS: FNC demonstrated more predictability for cognitive abilities than for mental health, with cross-validation from the UK Biobank study (N = 20,852), highlighting the importance of thalamus and hippocampus in longitudinal prediction, while FNC+environment demonstrated more predictive power than FNC in both cross-sectional and longitudinal prediction of all behaviors, especially for mental health (r = 0.32-0.63). We found that family and neighborhood exposures were common critical environmental influencers on cognitive ability and mental health, which can be mediated by FNC significantly. Healthy perinatal development was a unique protective factor for higher cognitive ability, whereas sleep problems, family conflicts, and adverse school environments specifically increased risk of poor mental health. CONCLUSIONS: This work revealed comprehensive environment-brain-behavior triple interactions based on the ABCD Study, identified cognitive control and default mode networks as the most predictive functional networks for a wide repertoire of behaviors, and underscored the long-lasting impact of critical environmental exposures on childhood development, in which sleep problems were the most prominent factors affecting mental health.


Subject(s)
Cognition , Sleep Wake Disorders , Child , Adolescent , Humans , Cross-Sectional Studies , Mental Health , Brain , Magnetic Resonance Imaging
3.
Res Sq ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37790426

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is one prevalent neurodevelopmental disorder with childhood onset, however, there is no clear correspondence established between clinical ADHD subtypes and primary medications. Identifying objective and reliable neuroimaging markers for categorizing ADHD biotypes may lead to more individualized, biotype-guided treatment. Here we proposed graph convolutional network plus deep clustering for ADHD biotype detection using functional network connectivity (FNC), resulting in two biotypes based on 1069 ADHD patients selected from Adolescent Brain and Cognitive Development (ABCD) study, which were well replicated on independent ADHD adolescents undergoing longitudinal medication treatment (n=130). Interestingly, in addition to differences in cognitive performance and hyperactivity/impulsivity symptoms, biotype 1 treated with methylphenidate demonstrated significantly better recovery than biotype 2 treated with atomoxetine (p<0.05, FDR corrected). This imaging-driven, biotype-guided approach holds promise for facilitating personalized treatment of ADHD, exploring possible boundaries through innovative deep learning algorithms aimed at improving medication treatment effectiveness.

4.
Hum Brain Mapp ; 43(11): 3486-3497, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35388581

ABSTRACT

Incidence of schizophrenia (SZ) has two predominant peaks, in adolescent and young adult. Early-onset schizophrenia provides an opportunity to explore the neuropathology of SZ early in the disorder and without the confound of antipsychotic mediation. However, it remains unexplored what deficits are shared or differ between adolescent early-onset (EOS) and adult-onset schizophrenia (AOS) patients. Here, based on 529 participants recruited from three independent cohorts, we explored AOS and EOS common and unique co-varying patterns by jointly analyzing three MRI features: fractional amplitude of low-frequency fluctuations (fALFF), gray matter (GM), and functional network connectivity (FNC). Furthermore, a prediction model was built to evaluate whether the common deficits in drug-naive SZ could be replicated in chronic patients. Results demonstrated that (1) both EOS and AOS patients showed decreased fALFF and GM in default mode network, increased fALFF and GM in the sub-cortical network, and aberrant FNC primarily related to middle temporal gyrus; (2) the commonly identified regions in drug-naive SZ correlate with PANSS positive significantly, which can also predict PANSS positive in chronic SZ with longer duration of illness. Collectively, results suggest that multimodal imaging signatures shared by two types of drug-naive SZ are also associated with positive symptom severity in chronic SZ and may be vital for understanding the progressive schizophrenic brain structural and functional deficits.


Subject(s)
Schizophrenia , Adolescent , Brain , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Temporal Lobe , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...