Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672882

ABSTRACT

Chili bean paste is a traditional flavor sauce, and its flavor compounds are closely related to its microflora. This study focused on investigating the content of bioactive compounds, flavor compounds, and microbial communities during the post-ripening fermentation of chili bean paste, aiming to provide a reference for improving the flavor of chili bean paste by regulating microorganisms. Compared to no post-ripening fermentation, the content of organic acids increased significantly (p < 0.05), especially that of citric acid (1.51 times). Glutamic acid (Glu) was the most abundant of the 17 free amino acids at 4.0 mg/g. The aroma profiles of the samples were significantly influenced by fifteen of the analyzed volatile compounds, especially methyl salicylate, methyl caproate, and 2-octanol (ROAV > 1). Latilactobacillus (27.45%) and Pseudomonas (9.01%) were the dominant bacterial genera, and Starmerella (32.95%) and Pichia (17.01%) were the dominant fungal genera. Weissella, Lacticaseibacillus, Pichia, and Kazachstania had positive effects on volatile flavoring compounds, which enriched the texture and flavor of the chili bean paste. Therefore, the microbial-community activity during the post-ripening fermentation is the key to enhance the flavor quality of the product.

2.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139441

ABSTRACT

Diosgenin is an important raw material used in the synthesis of steroid drugs, and it is widely used in the pharmaceutical industry. The traditional method of producing diosgenin is through using raw materials provided via the plant Dioscorea zingiberensis C. H. Wright (DZW), which is subsequently industrially hydrolyzed using a high quantity of hydrochloric and sulfuric acids at temperatures ranging from 70 °C to 175 °C. This process results in a significant amount of unmanageable wastewater, creates issues of severe environmental pollution and consumes high quantities of energy. As an alternative, the enzymolysis of DZW to produce diosgenin is an environmentally and friendly method with wide-ranging prospects for its application. However, there are still only a few enzymes that are suitable for production on an industrial scale. In this study, three new key enzymes, E1, E2, and E3, with a high conversion stability of diosgenin, were isolated and identified using an enzyme-linked-substrate autography strategy. HPLC-MS/MS identification showed that E1, a 134.45 kDa protein with 1019 amino acids (AAs), is a zinc-dependent protein similar to the M16 family. E2, a 97.89 kDa protein with 910 AAs, is a type of endo-ß-1,3-glucanase. E3, a 51.6 kDa protein with 476 AAs, is a type of Xaa-Pro aminopeptidase. In addition, the method to immobilize these proteins was optimized, and stability was achieved. The results show that the optimal immobilization parameters are 3.5% sodium alginate, 3.45% calcium chloride concentration, 1.4 h fixed time, and pH 8.8; and the recovery rate of enzyme activity can reach 43.98%. A level of 70.3% relative enzyme activity can be obtained after employing six cycles of the optimized technology. Compared with free enzymes, immobilized enzymes have improved stability, acid and alkaline resistance and reusability, which are conducive to large-scale industrial production.


Subject(s)
Dioscorea , Diosgenin , Aspergillus flavus/metabolism , Tandem Mass Spectrometry , Diosgenin/chemistry , Dioscorea/chemistry
3.
Microorganisms ; 11(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38004799

ABSTRACT

Aphids are one of the most destructive pests in agricultural production. In addition, aphids are able to easily develop resistance to chemical insecticides due to their rapid reproduction and short generation periods. To explore an effective and environmentally friendly aphid control strategy, we isolated and examined a fungus with aphid-parasitizing activity. The strain (YJNfs21.11) was identified as Aspergillus flavus by ITS, 28S, and BenA gene sequence analysis. Scanning electron microscopy and transmission electron microscopy revealed that the infection hyphae of 'YJNfs21.11' colonized and penetrated the aphid epidermal layer and subsequently colonized the body cavity. Field experiments showed that 'YJNfs21.11' and its fermentation products exerted considerable control on aphids, with a corrected efficacy of 96.87%. The lipase, protease, and chitinase secreted by fungi help aphid cuticle degradation, thus assisting spores in completing the infection process. Additionally, changes were observed in the mobility and physical signs of aphids, with death occurring within 60 h of infection. Our results demonstrate that A. flavus 'YJNfs21.11' exhibits considerable control on Aphis gossypii Glover and Hyalopterus arundimis Fabricius, making it a suitable biological control agent.

4.
Polymers (Basel) ; 11(9)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470594

ABSTRACT

The combined effects of nano titanium dioxide (TiO2-N) and clove oil (CO) on the physico-chemical, biological and structural properties of chitosan (CH)/starch (ST) films were investigated by using a solvent casting method. Results indicated that the incorporation of TiO2-N could improve the compactness of the film, increase the tensile strength (TS) and antioxidant activity, and decrease the water vapour permeability (WVP). As may be expected, the incorporation of CO into the film matrix decreased TS but increased the hydrophobicity as well as water vapour barrier antimicrobial and antioxidant properties. Fourier-transform infrared spectroscopy (FTIR) data supported intermolecular interactions between TiO2-N, CO and the film matrix. Use of a scanning electron microscope (SEM) showed that TiO2-N and CO were well dispersed and emulsified in the film network. Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves demonstrated that TiO2-N and CO were well embedded in the film matrix, hence this blend film system could provide new formulation options for food packaging materials in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...