Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 868
Filter
1.
Front Pharmacol ; 15: 1417951, 2024.
Article in English | MEDLINE | ID: mdl-39086389

ABSTRACT

Introduction: Eplerenone is approved for the treatment of hypertension as well as symptomatic heart failure with reduced ejection fraction (HFrEF) following an acute myocardial infarction. However, the adverse events (AEs) have not been systematically analyzed. The aim of this study was to identify adverse drug reactions (ADRs) related to eplerenone using the FDA Adverse Event Reporting System (FAERS) database. By identifying previously unreported AEs, the study could potentially contribute to updating the drug's label. Methods: In order to find significant AEs, four algorithms, including Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN) and Empirical Bayesian Geometric Mean (EBGM), were used to analyze the signal strength of the ADRs connected to eplerenone that were gathered from the FAERS database over the previous 20 years. Results: From 2004Q1 to 2023Q4, a total of 20, 629, 811 reported cases were gathered from the FAERS database for this study. After processing the data and filtering, 1,874 case reports were analyzed. Of these cases, 1,070 AEs were identified, 128 of which were eplerenone-related ADRs. We investigated the occurrence of ADRs induced by eplerenone in 27 organ systems. Our study showed that the AEs listed in the medication's package insert correspond with those listed in the literature, including hyperkalemia and increased creatinine. Additionally, the prescription label for eplerenone does not include all system organ class (SOC) terms, like Vascular disorders, hepatobiliary Disorders, etc. Discussion: The study used multiple algorithms to quantify the signal strength and then identified any previously unrecognized ADRs, further studies are needed to confirm the association of ADRs with eplerenone. The findings of this study may provide important insights into the safety profile of eplerenone, ensure that healthcare providers have up-to-date information about their potential risks and help guide them in the correct use of the drug.

2.
ACS Nano ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016265

ABSTRACT

Medical mineralogy explores the interactions between natural minerals and living organisms such as cells, tissues, and organs and develops therapeutic and diagnostic applications in drug delivery, medical devices, and healthcare materials. Many minerals (especially clays) have been recognized for pharmacological activities and therapeutic potential. Halloysite clay (Chinese medicine name: Chishizhi), manifested as one-dimensional aluminum silicate nanotubes (halloysite nanotubes, HNTs), has gained applications in hemostasis, wound repair, gastrointestinal diseases, tissue engineering, detection and sensing, cosmetics, and daily chemicals formulations. Various biomedical applications of HNTs are derived from hollow tubular structures, high mechanical strength, good biocompatibility, bioactivity, and unique surface characteristics. This natural nanomaterial is safe, abundantly available, and may be processed with environmentally safe green chemistry methods. This review describes the structure and physicochemical properties of HNTs relative to bioactivity. We discuss surface area, porosity and surface defects, hydrophilicity, heterogeneity and charge of external and internal surfaces, as well as biosafety. The paper provides comprehensive guidance for the development of this tubule nanoclay and its advanced biomedical applications for clinical diagnosis and therapy.

3.
Technol Cancer Res Treat ; 23: 15330338241263026, 2024.
Article in English | MEDLINE | ID: mdl-39043041

ABSTRACT

BACKGROUND: This study aims to assess the efficacy and safety of Endostar in the management of locally advanced cervical cancer. METHODS: This retrospective, 2-center study enrolled 41 patients with locally advanced cervical cancer between June 2017 and December 2020. The patients were subjected to a combination of Endostar and chemoradiotherapy until they experienced disease progression or an unacceptable level of toxicity. The patients in the Endostar combined chemoradiotherapy (E + CRT) and CRT groups were matched 1:1 based on clinical features, including age, disease stage, and pathological type. The therapeutic efficacy and safety outcomes were compared between the 2 groups. RESULTS: Early treatment response: the CR rates in E + CRT and CRT groups were 48.8% and 26.8%, respectively (χ2 = 4.20, P < .05). The ORR and DCR were not significantly different between the 2 groups. Long-term efficacy: there was no significant difference in the 1-year and 2-year PFS rates and OS rates between 2 groups. However, in patients with stage IIB, subgroup analyses revealed a significant difference in PFS between the 2 groups (P < .05). Prognostic factors: stage, Eastern Cooperative Oncology Group (ECOG) score, and tumor size were independent predictive factors for PFS, while ECOG score and tumor size were those of OS in patients with locally advanced cervical cancer. Safety: The incidence of grade III-IV myelosuppression was significantly lower in E + CRT group than in CRT group (P < .05). CONCLUSIONS: The combination of Endostar and concurrent CRT exhibited greater efficacy in treating locally advanced cervical cancer with no severe adverse reactions, when compared to simple CRT. It is expected that this approach will evolve into a new treatment alternative for patients with locally advanced cervical cancer.


Subject(s)
Chemoradiotherapy , Endostatins , Neoplasm Staging , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/mortality , Endostatins/therapeutic use , Endostatins/administration & dosage , Middle Aged , Chemoradiotherapy/methods , Retrospective Studies , Adult , Recombinant Proteins/administration & dosage , Recombinant Proteins/therapeutic use , Aged , Treatment Outcome
4.
Nat Commun ; 15(1): 5959, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009629

ABSTRACT

Understanding the mechanisms controlling forest carbon accumulation is crucial for predicting and mitigating future climate change. Yet, it remains unclear whether the dominance of ectomycorrhizal (EcM) trees influences the carbon accumulation of entire forests. In this study, we analyzed forest inventory data from over 4000 forest plots across Northeast China. We find that EcM tree dominance consistently exerts a positive effect on tree, soil, and forest carbon stocks. Moreover, we observe that these positive effects are more pronounced during unfavorable climate conditions, at lower tree species richness, and during early successional stages. This underscores the potential of increasing the dominance of native EcM tree species not only to enhance carbon stocks but also to bolster resilience against climate change in high-latitude forests. Here we show that forest managers can make informed decisions to optimize carbon accumulation by considering various factors such as mycorrhizal types, climate, successional stages, and species richness.


Subject(s)
Carbon , Climate Change , Forests , Mycorrhizae , Soil , Trees , Mycorrhizae/physiology , Trees/microbiology , Trees/metabolism , Carbon/metabolism , China , Soil/chemistry
5.
Plants (Basel) ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999614

ABSTRACT

Soybeans are grown worldwide owing to their protein, oil, and beneficial bioactive compounds. Genetic and environmental factors influence soybean seed isoflavones. In the present study, we profiled the seed isoflavones in world diverse soybean germplasm grown in two locations over two years in China. Significant differences (p < 0.001) were observed between the accessions, accession origins, seed coat colors, and maturity groups for individual and total isoflavone (TIF) content. TIF content of the soybean accessions ranged from 677.25 µg g-1 to 5823.29 µg g-1, representing an 8-fold difference. USA soybean accessions showed the highest mean TIF content (3263.07 µg g-1), followed by Japan (2521.26 µg g-1). Soybean with black seed coat showed the highest (3236.08 µg g-1) TIF concentration. Furthermore, isoflavone levels were significantly higher in late-maturity groups. Correlation analysis revealed significant positive associations between individual and TIF content. Malonyldaidzin and malonylgenistin showed higher correlations with TIF content (r = 0.92 and r = 0.94, respectively). The soybean accessions identified as having high and stable TIF content can be utilized in the food and pharmaceutical industries and breeding programs to develop soybean varieties with enhanced isoflavone content.

6.
J Biol Chem ; : 107595, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032650

ABSTRACT

The long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in a variety of human cancers. Two overlapping NEAT1 isoforms, NEAT1_1 and NEAT1_2, are produced through mutually exclusive alternative 3' end formation. Previous studies extensively investigated NEAT1 dysregulation in tumors, but often failed to achieve distinct quantification of the two NEAT1 isoforms. Moreover, molecular mechanisms governing the biogenesis of NEAT1 isoforms and the functional impacts of their dysregulation in tumorigenesis remain poorly understood. In this study, we employed an isoform-specific quantification assay and found differential dysregulation of NEAT1 isoforms in patient-derived glioblastoma multiforme (GBM) cells. We further showed usage of the NEAT1 proximal polyadenylation site (PAS) is a critical mechanism that controls glioma NEAT1 isoform production. CRISPR-Cas9-mediated PAS deletion reduced NEAT1_1 and reciprocally increased NEAT1_2, which enhanced nuclear paraspeckle formation in human glioma cells. Moreover, the utilization of the NEAT1 PAS is facilitated by the RNA binding protein Quaking (QKI), which binds to the proximal QKI response elements (QREs). Functionally, we identified transcriptomic changes and altered biological pathways caused by NEAT1 isoform imbalance in glioma cells, including the pathway for the regulation of cell migration. Finally, we demonstrated the forced increase of NEAT1_2 upon NEAT1 PAS deletion is responsible for driving glioma cell migration and promoting the expression of genes implicated in the regulation of cell migration. Together, our studies uncovered a novel mechanism that regulates NEAT1 isoforms and their functional impacts on the glioma transcriptome, which affect pathological pathways of glioma, represented by migration.

7.
BMC Plant Biol ; 24(1): 651, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977969

ABSTRACT

Soybean is a major source of protein and edible oil worldwide. Originating from the Huang-Huai-Hai region, which has a temperate climate, soybean has adapted to a wide latitudinal gradient across China. However, the genetic mechanisms responsible for the widespread latitudinal adaptation in soybean, as well as the genetic basis, adaptive differentiation, and evolutionary implications of theses natural alleles, are currently lacking in comprehensive understanding. In this study, we examined the genetic variations of fourteen major gene loci controlling flowering and maturity in 103 wild species, 1048 landraces, and 1747 cultivated species. We found that E1, E3, FT2a, J, Tof11, Tof16, and Tof18 were favoured during soybean improvement and selection, which explained 75.5% of the flowering time phenotypic variation. These genetic variation was significantly associated with differences in latitude via the LFMM algorithm. Haplotype network and geographic distribution analysis suggested that gene combinations were associated with flowering time diversity contributed to the expansion of soybean, with more HapA clustering together when soybean moved to latitudes beyond 35°N. The geographical evolution model was developed to accurately predict the suitable planting zone for soybean varieties. Collectively, by integrating knowledge from genomics and haplotype classification, it was revealed that distinct gene combinations improve the adaptation of cultivated soybeans to different latitudes. This study provides insight into the genetic basis underlying the environmental adaptation of soybean accessions, which could contribute to a better understanding of the domestication history of soybean and facilitate soybean climate-smart molecular breeding for various environments.


Subject(s)
Domestication , Genetic Variation , Glycine max , Glycine max/genetics , Glycine max/physiology , Glycine max/growth & development , Genes, Plant , Adaptation, Physiological/genetics , China , Haplotypes , Flowers/genetics , Flowers/growth & development , Flowers/physiology
8.
Plant Commun ; : 101041, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39030906

ABSTRACT

Diatoms, a group of prevalent marine algae, significantly contribute to global primary productivity. Their substantial biomass is linked to enhanced absorption of blue-green light underwater, facilitated by fucoxanthin chlorophyll a/c-binding proteins (FCPs), exhibiting oligomeric diversity across diatom species. Utilizing mild CN-PAGE analysis on solubilized thylakoid membranes, we displayed monomeric, dimeric, trimeric, tetrameric and pentameric FCPs in diatoms. Mass spectrometry analysis revealed each oligomeric FCP has specific protein compositions, constituting a large Lhcf family of FCP antennas. In addition, we resolved the structures of Thalassiosira pseudonana FCP (Tp-FCP) homotrimer and Chaetoceros gracilis FCP (Cg-FCP) pentamer by cryo-electron microscopy at 2.73 Å and 2.65 Å resolutions, respectively. The distinct pigment composition and organization in various oligomeric FCPs change their blue-green light-harvesting, excitation energy transfer pathways. In comparison to dimeric and trimeric FCPs, Cg-FCP tetramer and Cg-FCP pentamer exhibit stronger absorption by Chls c, red-shifted and broader Chl a fluorescence emission, as well as more robust circular dichroism signals originating from Chl a-carotenoid dimers. These spectroscopic characteristics indicate that Chl a molecules in Cg-FCP tetramer and Cg-FCP pentamer are more heterogeneous than in both dimers and Tp-FCP trimer. The structural and spectroscopic insights provided by this study contribute to a better understanding of the mechanisms that empower diatoms to adapt to fluctuating light environments.

10.
Front Nutr ; 11: 1413937, 2024.
Article in English | MEDLINE | ID: mdl-38962435

ABSTRACT

Aim: This study aims to evaluate the relationship between the Composite Dietary Antioxidant Index (CDAI) and the prevalence and recurrence of kidney stones. Methods: Data from the National Health and Nutrition Examination Survey (NHANES) collected between 2007 and 2014 were used in this cross-sectional analysis. The CDAI was derived by standardizing the intake of dietary antioxidants from 24 h dietary recalls. The study assessed the prevalence and recurrence of kidney stones based on questionnaire responses. The association between the CDAI and both the prevalence and recurrence of kidney stones was investigated using multivariable logistic regression. Subgroup analyses and interaction tests further evaluated the robustness of this relationship. Results: The study included 20,743 participants, and the reported incidence and recurrence rates of kidney stones were 9.09 and 2.90%, respectively. After stratifying the CDAI into tertiles, an inverse trend was observed in both kidney stones' prevalence and recurrence probabilities with increasing CDAI levels. Adjusting for confounding factors, individuals in the top tertile had a 23% lower prevalence of kidney stones (OR = 0.77, 95% CI: 0.66, 0.90, p = 0.0011) and a 39% lower recurrence rate (OR = 0.61, 95% CI: 0.47, 0.80, p = 0.0003) than those in the bottom tertile. In addition, interaction tests showed that age, gender, body mass index, hypertension, and diabetes did not significantly affect the relationship between CDAI levels and kidney stone prevalence and recurrence rates. Conclusion: Our study suggests that increased levels of CDAI are associated with reduced incidence and recurrence rates of kidney stones. Therefore, increasing the intake of dietary antioxidants may be an effective strategy for preventing kidney stones and their recurrence.

11.
Nutrients ; 16(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064715

ABSTRACT

Iron is a vital trace element for our bodies and its imbalance can lead to various diseases. The progression of metabolic-associated fatty liver disease (MAFLD) is often accompanied by disturbances in iron metabolism. Alisma orientale extract (AOE) has been reported to alleviate MAFLD. However, research on its specific lipid metabolism targets and its potential impact on iron metabolism during the progression of MAFLD remains limited. To establish a model of MAFLD, mice were fed either a standard diet (CON) or a high-fat diet (HFD) for 9 weeks. The mice nourished on the HFD were then randomly assigned to the HF group and the HFA group, with the HFA group receiving AOE by gavage on a daily basis for 13 weeks. Supplementation with AOE remarkably reduced overabundant lipid accumulation in the liver and restored the iron content of the liver. AOE partially but significantly reversed dysregulated lipid metabolizing genes (SCD1, PPAR γ, and CD36) and iron metabolism genes (TFR1, FPN, and HAMP) induced by HFD. Chromatin immunoprecipitation assays indicated that the reduced enrichment of FXR on the promoters of SCD1 and FPN genes induced by HFD was significantly reversed by AOE. These findings suggest that AOE may alleviate HFD-induced disturbances in liver lipid and iron metabolism through FXR-mediated gene repression.


Subject(s)
Diet, High-Fat , Iron , Lipid Metabolism , Liver , Plant Extracts , Receptors, Cytoplasmic and Nuclear , Animals , Plant Extracts/pharmacology , Liver/metabolism , Liver/drug effects , Iron/metabolism , Mice , Male , Lipid Metabolism/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Diet, High-Fat/adverse effects , Alisma/chemistry , Mice, Inbred C57BL , Disease Models, Animal , Gene Expression Regulation/drug effects , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism
12.
Nat Chem Biol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977786

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are prokaryotic adaptive immune systems against invading phages and other mobile genetic elements. Notably, some phages, including the Vibrio cholerae-infecting ICP1 (International Center for Diarrheal Disease Research, Bangladesh cholera phage 1), harbor CRISPR-Cas systems to counteract host defenses. Nevertheless, ICP1 Cas8f lacks the helical bundle domain essential for recruitment of helicase-nuclease Cas2/3 during target DNA cleavage and how this system accomplishes the interference stage remains unknown. Here, we found that Cas1, a highly conserved component known to exclusively work in the adaptation stage, also mediates the interference stage through connecting Cas2/3 to the DNA-bound CRISPR-associated complex for antiviral defense (Cascade; CRISPR system yersinia, Csy) of the ICP1 CRISPR-Cas system. A series of structures of Csy, Csy-dsDNA (double-stranded DNA), Cas1-Cas2/3 and Csy-dsDNA-Cas1-Cas2/3 complexes reveal the whole process of Cas1-mediated target DNA cleavage by the ICP1 CRISPR-Cas system. Together, these data support an unprecedented model in which Cas1 mediates the interference stage in a phage-encoded CRISPR-Cas system and the study also sheds light on a unique model of primed adaptation.

13.
J Med Virol ; 96(7): e29776, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953430

ABSTRACT

The genetic diversity of killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) genes influences the host's immune response to viral pathogens. This study aims to explore the impact of five single nucleotide polymorphisms (SNPs) in KIR3DL2 and HLA-A genes on hepatitis C virus (HCV) infection. A total of 2251 individuals were included in the case-control study. SNPs including KIR3DL2 rs11672983, rs3745902, rs1654644, and HLA-A rs3869062, rs12202296 were genotyped. By controlling various confounding factors using a modified logistic regression model, as well as incorporating stratified analysis, joint effects analysis, and multidimensional bioinformatics analysis, we analyzed the relationship between SNPs and HCV infection. The logistic regression analysis showed a correlation between KIR3DL2 rs11672983 AA, KIR3DL2 rs3745902 TT, and increased HCV susceptibility (p < 0.01). Stratified analysis indicated that KIR3DL2 rs1654644 and HLA-A rs3869062 also heightened HCV susceptibility in certain subgroups. A linear trend of rising HCV infection rates was observed when combining KIR3DL2 rs11672983 AA and KIR3DL2 rs3745902 TT (ptrend = 0.007). Bioinformatics analysis suggested these SNPs' regulatory potential and their role in altering messenger RNA secondary structure, implying their functional relevance in HCV susceptibility. Our findings indicate that KIR3DL2 rs11672983 AA and KIR3DL2 rs3745902 TT are significantly associated with increased susceptibility to HCV infection.


Subject(s)
Genetic Predisposition to Disease , Genotype , Hepatitis C , Polymorphism, Single Nucleotide , Humans , Male , Female , Case-Control Studies , Hepatitis C/genetics , Hepatitis C/virology , Hepatitis C/immunology , Middle Aged , Adult , HLA-A Antigens/genetics , Hepacivirus/genetics , Hepacivirus/immunology , Receptors, KIR/genetics , Aged , Receptors, KIR3DL2/genetics
14.
Clinics (Sao Paulo) ; 79: 100429, 2024.
Article in English | MEDLINE | ID: mdl-39053030

ABSTRACT

BACKGROUND: The Angiographic Microvascular Resistance (AMR), derived from a solitary angiographic view, has emerged as a viable substitute for the Index of Microcirculatory Resistance (IMR). However, the prognostic significance in ST-Segment Elevation Myocardial Infarction (STEMI) patients is yet to be established. This research endeavors to explore the prognostic capabilities of AMR in patients diagnosed with STEMI. METHODS: In this single-center, retrospective study, 232 patients diagnosed with STEMI who received primary Percutaneous Coronary Intervention (PCI) were recruited from January 1, 2018, to June 30, 2022. Utilizing the maximally selected log-rank statistics analysis, participants were divided into two cohorts according to an AMR threshold of 2.55 mmHg*s/cm. The endpoint evaluated was a composite of all-cause mortality or hospital readmission due to heart failure. RESULTS: At a median follow-up of 1.74 (1.07, 3.65) years, the composite endpoint event was observed in 28 patients within the higher AMR group and 8 patients within the lower AMR group. The higher AMR group showed a significantly higher risk for composite outcome compared to those within the low-AMR group (HRadj: 3.33; 95% CI 1.30‒8.52; p = 0.03). AMR ≥ 2.55 mmHg*s/cm was an independent predictor of the composite endpoint (HR = 2.33; 95% CI 1.04‒5.21; p = 0.04). Furthermore, a nomogram containing age, sex, left ventricle ejection fraction, post-PCI Quantitative Flow Ratio (QFR), and AMR was developed and indicated a poorer prognosis in the high-risk group for STEMI patients at 3 years. (HR=4.60; 95% CI 1.91‒11.07; p < 0.01). CONCLUSIONS: AMR measured after PCI can predict the risk of all-cause death or readmission for heart failure in patients with STEMI. AMR-involved nomograms improved predictive performance over variables alone.


Subject(s)
Coronary Angiography , Microcirculation , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Vascular Resistance , Humans , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/physiopathology , ST Elevation Myocardial Infarction/mortality , ST Elevation Myocardial Infarction/surgery , Female , Male , Middle Aged , Retrospective Studies , Prognosis , Aged , Microcirculation/physiology , Vascular Resistance/physiology , Risk Factors , Predictive Value of Tests
15.
Clin Exp Ophthalmol ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034272

ABSTRACT

BACKGROUND: To evaluate repeatability and agreement in measurements of total corneal astigmatism (TCA) in keratoconic eyes, using four optical coherence tomography (OCT)-based devices: Anterion, Casia SS-1000, IOLMaster 700, and MS-39. METHODS: Three consecutive measurements were taken with each device in 136 eyes. TCA values were converted into components J0 and J45. The Anterion and the IOLMaster 700 also provided axial length (AL) measurements. The repeatability was calculated using pooled within-subject standard deviation (Sw). The agreement among the four devices was assessed by pairwise comparisons and Bland-Altman plots. RESULTS: For all devices, the repeatability of TCA measurements showed Sw ≤0.23 D for TCA magnitude, ≤0.14 D for J0, and ≤0.12 D for J45. There were statistically significant differences in TCA magnitude for each pair, except for IOLMaster 700 with MS-39, and Anterion with MS-39. The repeatability (Sw) of axis measurements had a statistically significant negative correlation with the TCA magnitude (p < 0.001 for all devices). Both Anterion and IOLMaster 700 had high repeatability in AL measurements (Sw: 0.007 mm for Anterion and 0.009 mm for IOLMaster 700). The difference in AL between the two was 0.015 ± 0.033 mm (p < 0.001). CONCLUSIONS: All four devices showed good repeatability in TCA measurements in keratoconic eyes, the agreement for TCA measurements between the tested devices was generally low. Anterion and IOLMaster 700 showed good repeatability and agreement in AL measurements.

16.
Heliyon ; 10(13): e34163, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071606

ABSTRACT

Objective: Invasive lung adenocarcinoma(ILA) with micropapillary (MPP)/solid (SOL) components has a poor prognosis. Preoperative identification is essential for decision-making for subsequent treatment. This study aims to construct and evaluate a super-resolution(SR) enhanced radiomics model designed to predict the presence of MPP/SOL components preoperatively to provide more accurate and individualized treatment planning. Methods: Between March 2018 and November 2023, patients who underwent curative intent ILA resection were included in the study. We implemented a deep transfer learning network on CT images to improve their resolution, resulting in the acquisition of preoperative super-resolution CT (SR-CT) images. Models were developed using radiomic features extracted from CT and SR-CT images. These models employed a range of classifiers, including Logistic Regression (LR), Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Random Forest, Extra Trees, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Multilayer Perceptron (MLP). The diagnostic performance of the models was assessed by measuring the area under the curve (AUC). Result: A total of 245 patients were recruited, of which 109 (44.5 %) were diagnosed with ILA with MPP/SOL components. In the analysis of CT images, the SVM model exhibited outstanding effectiveness, recording AUC scores of 0.864 in the training group and 0.761 in the testing group. When this SVM approach was used to develop a radiomics model with SR-CT images, it recorded AUCs of 0.904 in the training and 0.819 in the test cohorts. The calibration curves indicated a high goodness of fit, while decision curve analysis (DCA) highlighted the model's clinical utility. Conclusion: The study successfully constructed and evaluated a deep learning(DL)-enhanced SR-CT radiomics model. This model outperformed conventional CT radiomics models in predicting MPP/SOL patterns in ILA. Continued research and broader validation are necessary to fully harness and refine the clinical potential of radiomics when combined with SR reconstruction technology.

17.
Thorax ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871464

ABSTRACT

RATIONALE: Early natural menopause (early-M; <45 years of age) increases the risk of lung morbidities and mortalities in smokers. However, it is largely unknown whether early-M due to surgery demonstrates similar effects and whether menopausal hormone therapy (MHT) is protective against lung diseases. OBJECTIVES: To assess the associations of early-M and MHT with lung morbidities and mortalities using the prospective Prostate, Lung, Colorectal and Ovarian (PLCO) trial. METHODS: We estimated the risk among 69 706 postmenopausal women in the PLCO trial, stratified by menopausal types and smoking status. RESULTS: Early-M was associated with an increased risk of most lung disease and mortality outcomes in ever smokers with the highest risk seen for respiratory mortality (HR 1.98, 95% CI 1.34 to 2.92) in those with bilateral oophorectomy (BO). Early-M was positively associated with chronic bronchitis, and all-cause, non-cancer and respiratory mortality in never smokers with natural menopause or BO, with the highest risk seen for BO- respiratory mortality (HR 1.91, 95% CI 1.16 to 3.12). Ever MHT was associated with reduced all-cause, non-cancer and cardiovascular mortality across menopause types regardless of smoking status and was additionally associated with reduced risk of non-ovarian cancer, lung cancer (LC) and respiratory mortality in ever smokers. Among smokers, ever MHT use was associated with a reduction in HR for all-cause, non-cancer and cardiovascular mortality in a duration-dependent manner. CONCLUSIONS: Smokers with early-M should be targeted for smoking cessation and LC screening regardless of menopause types. MHT users had a lower likelihood of dying from LC and respiratory diseases in ever smokers.

19.
Cell Metab ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38906140

ABSTRACT

Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic/signaling cell-surface receptor that regulates diverse cellular functions, including cell survival, differentiation, and proliferation. LRP1 has been previously implicated in the pathogenesis of neurodegenerative disorders, but there are inconsistencies in its functions. Therefore, whether and how LRP1 maintains brain homeostasis remains to be clarified. Here, we report that astrocytic LRP1 promotes astrocyte-to-neuron mitochondria transfer by reducing lactate production and ADP-ribosylation factor 1 (ARF1) lactylation. In astrocytes, LRP1 suppressed glucose uptake, glycolysis, and lactate production, leading to reduced lactylation of ARF1. Suppression of astrocytic LRP1 reduced mitochondria transfer into damaged neurons and worsened ischemia-reperfusion injury in a mouse model of ischemic stroke. Furthermore, we examined lactate levels in human patients with stroke. Cerebrospinal fluid (CSF) lactate was elevated in stroke patients and inversely correlated with astrocytic mitochondria. These findings reveal a protective role of LRP1 in brain ischemic stroke by enabling mitochondria-mediated astrocyte-neuron crosstalk.

20.
Article in English | MEDLINE | ID: mdl-38918234

ABSTRACT

Radiation pneumonia is a common adverse reaction during radiotherapy in lung cancer patients, which negatively impacts the quality of life and survival of patients. Recent studies have shown that compound Kushen injection (CKI), a traditional Chinese medicine (TCM), has great anti-inflammatory and anticancer potential, but the mechanism is still unclear. We used CiteSpace, the R package "bibliometrix," and VOSviewers to perform a bibliometrics analysis of 162 articles included from the Web of Science core collection. A network pharmacology-based approach was used to screen effective compounds, screen and predict target genes, analyze biological functions and pathways, and construct regulatory networks and protein interaction networks. Molecular docking experiments were used to identify the affinity of key compounds and core target. The literature metrology analysis revealed that over 90% of the CKI-related studies were conducted by Chinese scholars and institutions, with a predominant focus on tumors, while research on radiation pneumonia remained limited. Our investigation identified 60 active ingredients of CKI, 292 genes associated with radiation pneumonia, 533 genes linked to lung cancer, and 37 common targets of CKI in the treatment of both radiation pneumonia and lung cancer. These core potential targets were found to be significantly associated with the OS of lung cancer patients, and the key compounds exhibited a good docking affinity with these targets. Additionally, GO and KEGG enrichment analysis highlighted that the bioinformatics annotation of these common genes mainly involved ubiquitin protein ligase binding, cytokine receptor binding, and the PI3K/Akt signaling pathway. Our study revealed that the main active components of CKI, primarily quercetin, luteolin, and naringin, might act on major core targets, including AKT1, PTGS2, and PPARG, and further regulated key signaling pathways such as the PI3K/Akt pathway, thereby playing a crucial role in the treatment of radiation pneumonia and lung cancer. Moreover, this study had a certain promotional effect on further clinical application and provided a theoretical basis for subsequent experimental research.

SELECTION OF CITATIONS
SEARCH DETAIL