Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Shock ; 57(1): 24-30, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34172608

ABSTRACT

BACKGROUND: Severe trauma is associated with severe systemic inflammation and neuroendocrine activation that is associated with erythroid progenitor growth suppression and refractory anemia. Although distinct transcriptional profiles have been detected in numerous tissue types after trauma, no study has yet characterized this within the bone marrow. This study sought to identify a unique bone marrow transcriptomic response following trauma. METHODS: In a prospective observational cohort study, bone marrow was obtained from severely injured trauma patients with a hip or femur fracture (n = 52), elective hip replacement patients (n = 33), and healthy controls (n = 11). RNA was isolated from bone marrow using a Purelink RNA mini kit. Direct quantification of mRNA copies was performed by NanoString Technologies on a custom gene panel. RESULTS: Trauma patients displayed an upregulation of genes encoding receptors known to have inhibitory downstream effects on erythropoiesis, including ferroportin, interleukin-6 (IL-6) receptor, transforming growth factor-beta (TGF-ß) receptor, and IL-10, as well as genes involved in innate immunity including toll-like receptor 4 (TLR4)-mediated signaling factors. In contrast, hip replacement patients had downregulated transcription of IL-1ß, IL-6, TGF-ß, tumor necrosis factor alpha, and the HAMP gene with no change in TLR4-mediated signaling factors. CONCLUSIONS: A unique transcriptomic response within the bone marrow was identified following severe trauma compared to elective hip replacement. These transcriptomic differences were related to the innate immune response as well as known inhibitors of erythropoiesis. Although confined to just one time point, this differential transcriptional response may be linked to refractory anemia and inflammation after injury.


Subject(s)
Bone Marrow/metabolism , Femoral Fractures , Hip Fractures , RNA, Messenger/metabolism , Adult , Arthroplasty, Replacement, Hip , Case-Control Studies , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Down-Regulation , Hepcidins/genetics , Hepcidins/metabolism , Humans , Interleukins/genetics , Interleukins/metabolism , Lymphotoxin-alpha/genetics , Lymphotoxin-alpha/metabolism , Male , Middle Aged , Prospective Studies , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
2.
Ann Surg ; 274(4): 664-673, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34506322

ABSTRACT

OBJECTIVE: To analyze serial biomarkers of the persistent inflammation, immunosuppression, and catabolism syndrome (PICS) to gain insight into the pathobiology of chronic critical illness (CCI) after surgical sepsis. BACKGROUND: Although early deaths after surgical intensive care unit sepsis have decreased and most survivors rapidly recover (RAP), one third develop the adverse clinical trajectory of CCI. However, the underlying pathobiology of its dismal long-term outcomes remains unclear. METHODS: PICS biomarkers over 14 days from 124 CCI and 225 RAP sepsis survivors were analyzed to determine associations and prediction models for (1) CCI (≥14 intensive care unit days with organ dysfunction) and (2) dismal 1-year outcomes (Zubrod 4/5 performance scores). Clinical prediction models were created using PIRO variables (predisposition, insult, response, and organ dysfunction). Biomarkers were then added to determine if they strengthened predictions. RESULTS: CCI (vs RAP) and Zubrod 4/5 (vs Zubrod 0-3) cohorts had greater elevations in biomarkers of inflammation (interleukin [IL]-6, IL-8, interferon gamma-induced protein [IP-10], monocyte chemoattractant protein 1), immunosuppression (IL-10, soluble programmed death ligand-1), stress metabolism (C-reactive protein, glucagon-like peptide 1), and angiogenesis (angiopoietin-2, vascular endothelial growth factor, vascular endothelial growth factor receptor-1, stromal cell-derived factor) at most time-points. Clinical models predicted CCI on day 4 (area under the receiver operating characteristics curve [AUC] = 0.89) and 1 year Zubrod 4/5 on day 7 (AUC = 0.80). IL-10 and IP-10 on day 4 minimally improved prediction of CCI (AUC = 0.90). However, IL-10, IL-6, IL-8, monocyte chemoattractant protein 1, IP-10, angiopoietin-2, glucagon-like peptide 1, soluble programmed death ligand-1, and stromal cell-derived factor on day 7 considerably improved the prediction of Zubrod 4/5 status (AUC = 0.88). CONCLUSIONS: Persistent elevations of PICS biomarkers in the CCI and Zubrod 4/5 cohorts and their improved prediction of Zubrod 4/5 validate that PICS plays a role in CCI pathobiology.


Subject(s)
Biomarkers/metabolism , Critical Illness , Immune Tolerance , Inflammation , Postoperative Complications/metabolism , Sepsis/metabolism , Adult , Aged , Disease Susceptibility , Female , Humans , Longitudinal Studies , Male , Middle Aged , Postoperative Complications/etiology , Postoperative Complications/therapy , Predictive Value of Tests , Prospective Studies , Sepsis/etiology , Sepsis/therapy , Syndrome
3.
J Clin Med ; 10(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34361995

ABSTRACT

Surgical sepsis has evolved into two major subpopulations: patients who rapidly recover, and those who develop chronic critical illness (CCI). Our primary aim was to determine whether CCI sepsis survivors manifest unique blood leukocyte transcriptomes in late sepsis that differ from transcriptomes among sepsis survivors with rapid recovery. In a prospective cohort study of surgical ICU patients, genome-wide expression analysis was conducted on total leukocytes in human whole blood collected on days 1 and 14 from sepsis survivors who rapidly recovered or developed CCI, defined as ICU length of stay ≥ 14 days with persistent organ dysfunction. Both sepsis patients who developed CCI and those who rapidly recovered exhibited marked changes in genome-wide expression at day 1 which remained abnormal through day 14. Although summary changes in gene expression were similar between CCI patients and subjects who rapidly recovered, CCI patients exhibited differential expression of 185 unique genes compared with rapid recovery patients at day 14 (p < 0.001). The transcriptomic patterns in sepsis survivors reveal an ongoing immune dyscrasia at the level of the blood leukocyte transcriptome, consistent with persistent inflammation and immune suppression. Furthermore, the findings highlight important genes that could compose a prognostic transcriptomic metric or serve as therapeutic targets among sepsis patients that develop CCI.

4.
J Trauma Acute Care Surg ; 91(4): 692-699, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34252063

ABSTRACT

BACKGROUND: After severe trauma, the older host experiences more dysfunctional hematopoiesis of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs), and dysfunctional differentiation of circulating myeloid cells into effective innate immune cells. Our main objective was to compare BM HSPC microRNA (miR) responses of old and young mice in a clinically relevant model of severe trauma and shock. METHODS: C57BL/6 adult male mice aged 8 to 12 weeks (young) and 18 to 24 months (old) underwent multiple injuries and hemorrhagic shock (polytrauma [PT]) that engenders the equivalent of major trauma (Injury Severity Score, >15). Pseudomonas pneumonia (PNA) was induced in some young and old adult mice 24 hours after PT. MicroRNA expression patterns were determined from lineage-negative enriched BM HSPCs isolated from PT and PT-PNA mice at 24 and 48 hours postinjury, respectively. Genome-wide expression and pathway analyses were also performed on bronchoalveolar lavage (BAL) leukocytes from both mouse cohorts. RESULTS: MicroRNA expression significantly differed among all experimental conditions (p < 0.05), except for old-naive versus old-injured (PT or PT-PNA) mice, suggesting an inability of old mice to mount a robust early miR response to severe shock and injury. In addition, young adult mice had significantly more leukocytes obtained from their BAL, and there were greater numbers of polymorphonuclear cells compared with old mice (59.8% vs. 2.2%, p = 0.0069). Despite increased gene expression changes, BAL leukocytes from old mice demonstrated a more dysfunctional transcriptomic response to PT-PNA than young adult murine BAL leukocytes, as reflected in predicted upstream functional pathway analysis. CONCLUSION: The miR expression pattern in BM HSPCs after PT (+/-PNA) is dissimilar in old versus young adult mice. In the acute postinjury phase, old adult mice are unable to mount a robust miR HSPC response. Hematopoietic stem and progenitor cell miR expression in old PT mice reflects a diminished functional status and a blunted capacity for terminal differentiation of myeloid cells.


Subject(s)
Bone Marrow/pathology , Hematopoiesis/genetics , Hematopoietic Stem Cells/physiology , Multiple Trauma/complications , Shock, Hemorrhagic/immunology , Age Factors , Aging/blood , Aging/genetics , Aging/immunology , Animals , Bone Marrow/physiology , Cell Differentiation/immunology , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation/immunology , Hematopoiesis/immunology , Humans , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Multiple Trauma/blood , Multiple Trauma/immunology , Shock, Hemorrhagic/blood , Shock, Hemorrhagic/genetics , Shock, Hemorrhagic/pathology
5.
J Clin Med ; 10(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920518

ABSTRACT

Implementation of protocolized surveillance, diagnosis, and management of septic patients, and of surgical sepsis patients in particular, is shown to result in significantly increased numbers of patients surviving their initial hospitalization. Currently, most surgical sepsis patients will rapidly recover from sepsis; however, many patients will not rapidly recover, but instead will go on to develop chronic critical illness (CCI) and experience dismal long-term outcomes. The elderly and comorbid patient is highly susceptible to death or CCI after sepsis. Here, we review aspects of the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) endotype to explain the underlying pathobiology of a dysregulated immune system in sepsis survivors who develop CCI; then, we explore targets for immunomodulatory therapy.

7.
Shock ; 56(1): 30-41, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33234838

ABSTRACT

ABSTRACT: Hematopoietic stem/progenitor cells (HSPC) have both unique and common responses following hemorrhage, injury, and sepsis. HSPCs from different lineages have a distinctive response to these "stress" signals. Inflammation, via the production of inflammatory factors, including cytokines, hormones, and interferons, has been demonstrated to impact the differentiation and function of HSPCs. In response to injury, hemorrhagic shock, and sepsis, cellular phenotypic changes and altered function occur, demonstrating the rapid response and potential adaptability of bone marrow hematopoietic cells. In this review, we summarize the pathophysiology of emergency myelopoiesis and the role of myeloid-derived suppressor cells, impaired erythropoiesis, as well as the mobilization of HSPCs from the bone marrow. Finally, we discuss potential therapeutic options to optimize HSPC function after severe trauma or infection.


Subject(s)
Hematopoietic Stem Cells/physiology , Hemorrhage/physiopathology , Sepsis/physiopathology , Stem Cells/physiology , Wounds and Injuries/physiopathology , Humans
8.
Front Med (Lausanne) ; 7: 616694, 2020.
Article in English | MEDLINE | ID: mdl-33659259

ABSTRACT

Improved management of severe sepsis has been one of the major health care accomplishments of the last two decades. Due to enhanced recognition and improved management of severe sepsis, in-hospital mortality has been reduced by up to 40%. With that good news, a new syndrome has unfortunately replaced in-hospital multi-organ failure and death. This syndrome of chronic critical illness (CCI) includes sepsis patients who survive the early "cytokine or genomic storm," but fail to fully recover, and progress into a persistent state of manageable organ injury requiring prolonged intensive care. These patients are commonly discharged to long-term care facilities where sepsis recidivism is high. As many as 33% of sepsis survivors develop CCI. CCI is the result, at least in part, of a maladaptive host response to chronic pattern-recognition receptor (PRR)-mediated processes. This maladaptive response results in dysregulated myelopoiesis, chronic inflammation, T-cell atrophy, T-cell exhaustion, and the expansion of suppressor cell functions. We have defined this panoply of host responses as a persistent inflammatory, immune suppressive and protein catabolic syndrome (PICS). Why is this important? We propose that PICS in survivors of critical illness is its own common, unique immunological endotype driven by the constant release of organ injury-associated, endogenous alarmins, and microbial products from secondary infections. While this syndrome can develop as a result of a diverse set of pathologies, it represents a shared outcome with a unique underlying pathobiological mechanism. Despite being a common outcome, there are no therapeutic interventions other than supportive therapies for this common disorder. Only through an improved understanding of the immunological endotype of PICS can rational therapeutic interventions be designed.

SELECTION OF CITATIONS
SEARCH DETAIL
...