Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 141(18): 5346-57, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27351032

ABSTRACT

Scientific studies in drug development and toxicology rely heavily on animal models, which often inaccurately predict the true response for human exposure. This may lead to unanticipated adverse effects or misidentified risks that result in, for example, drug candidate elimination. The utilization of human cells and tissues for in vitro physiological platforms has become a growing area of interest to bridge this gap and to more accurately predict human responses to drugs and toxins. The effects of new drugs and toxins on the peripheral nervous system are often investigated with neurons isolated from dorsal root ganglia (DRG), typically with one-time measurement techniques such as patch clamping. Here, we report the use of our multi-electrode array (MEA) platform for long-term noninvasive assessment of human DRG cell health and function. In this study, we acquired simultaneous optical and electrophysiological measurements from primary human DRG neurons upon chemical stimulation repeatedly through day in vitro (DIV) 23. Distinct chemical signatures were noted for the cellular responses evoked by each chemical stimulus. Additionally, the cell viability and function of the human DRG neurons were consistent through DIV 23. To the best of our knowledge, this is the first report on long-term measurements of the cell health and function of human DRG neurons on a MEA platform. Future generations will include higher electrode numbers in customized arrangements as well as integration with different tissue types on a single device. This platform will provide a valuable testing tool for both rodent and human cells, enabling a more comprehensive risk assessment for drug candidates and toxicants.


Subject(s)
Ganglia, Spinal/cytology , Lab-On-A-Chip Devices , Neurons/cytology , Cells, Cultured , Electrophysiological Phenomena , Humans
2.
J Virol Methods ; 91(2): 157-66, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11164497

ABSTRACT

Infection by herpes simplex virus-2 (HSV-2) disrupts both dye and electrical coupling in Vero (African green monkey kidney) cell cultures. Vero cells in vitro were iontophoretically injected with the fluorescent dye Lucifer yellow CH, the spread of which revealed that cells throughout the confluent sheet shared open gap junctions. However, 24 h after infection with the virus (but before cells became rounded), dye always remained only within the target cell. Intracellular electrophysiological measurements of ionic coupling revealed a 0.4 coupling coefficient for adjacent cells in uninfected control cultures. By 3 h following infection significant down-regulation of gap junctions had begun, preceding by many hours any signs of infection visible with the light microscope. Measurements between adjacent cells 3 h post-infection, a period when HSV-2 gene expression is known to be at a maximum, yielded an average coupling coefficient of 0.35. By 6 h post-infection (a period of known viral DNA replication) average coupling coefficient for adjacent cells was 0.25, while by 24 h post-infection the average fill still further to <0.08. A coupling coefficient of <0.08 suggests that infection by HSV-2 completely disabled the gap junctions.


Subject(s)
Cell Communication , Gap Junctions , Herpesvirus 2, Human/physiology , Animals , Chlorocebus aethiops , Electrophysiology , Fluorescent Dyes , Gap Junctions/physiology , In Vitro Techniques , Isoquinolines , Microelectrodes , Microinjections , Time Factors , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...