Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38591377

ABSTRACT

The determination of the electrochemically active surface area (ECSA) of a catalyst layer (CL) of a non-precious metal catalyst is of fundamental importance in optimizing the design of a durable CL for anion exchange membrane (AEM) water electrolysis, but has yet to be developed. Traditional double layer capacitance (Cdl), measured by cyclic voltammetry (CV), is not suitable for the estimation of the ECSA due to the nonconductive nature of Ni-based oxides and hydroxides in the non-Faradaic region. This paper analyses the applicability of electrochemical impedance spectroscopy (EIS) compared to CV in determining capacitances for the estimation of the ECSA of AEM-based CLs in an aqueous KOH electrolyte solution. A porous electrode transmission line (TML) model was employed to obtain the capacitance-voltage dependence from 1.0 V to 1.5 V at 20 mV intervals, covering both non-Faradic and Faradic regions. This allows for the identification of the contribution of a NiFe-layered double hydroxide (LDH) catalyst and supports in a CL, to capacitances in both non-Faradic and Faradic regions. A nearly constant double layer capacitance (Qdl) observed in the non-Faradic region represents the interfaces between catalyst supports and electrolytes. The capacitance determined in the Faradic region by EIS experiences a peak capacitance (QF), which represents the maximum achievable ECSA in an AEMCL during reactions. The EIS method was additionally validated in durability testing. An approximate 30% loss of QF was noted while Qdl remained unchanged following an eight-week test at 1 A/cm2 constant current density, implying that QF, determined by EIS, is sensitive to and therefore suitable for assessing the loss of ECSA. This universal method can provide a reasonable estimate of catalyst utilization and enable the monitoring of catalyst degradation in CLs, in particular in liquid alkaline electrolyte water electrolysis systems.

2.
Nanoscale ; 12(38): 19797-19803, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-32966519

ABSTRACT

Room-temperature ferromagnetic behaviour has been reported in nanoscale materials expected to be diamagnetic, including gold. However, it is yet unclear which factors (size, shape, surface coating) predominantly influence the magnitude of the magnetic response. In this work, we study the magnetic and electronic properties of similarly-sized gold nanoparticles (Au NPs) coated with four different n-alkanethiols, as well as hydroxyl- and carboxyl-functionalized alkanethiols using superconducting quantum interference device (SQUID) magnetometry and ultraviolet photoelectron spectroscopy (UPS). We find room-temperature behaviour (hysteresis in magnetization vs. field strength loops) in all samples, as well as large effective magnetic anisotropy. Importantly, we find the nanoparticles coated with polar chain end-groups (-OH and -COOH) show markedly higher magnetization; this increased magnetization correlates with a higher work function. This work establishes chemical handles to enhance magnetism in nanoscale gold particles.

3.
J Glob Antimicrob Resist ; 22: 139-144, 2020 09.
Article in English | MEDLINE | ID: mdl-32006753

ABSTRACT

OBJECTIVES: To investigate the prevalence and characteristics of methicillin-resistant staphylococci on dairy farms in England and Wales including zoonotic MRSA. METHODS: Bulk tank milk was sampled from 363 dairy farms in 2015-2016 and methicillin-resistant staphylococci were isolated by salt broth enrichment and plating on MRSA Brilliance selective agar. Isolates were characterised through antimicrobial susceptibility testing and whole-genome sequencing. RESULTS: Methicillin-resistant staphylococci were isolated from ∼5% of dairy farms and belonged to six different species, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lentus, Staphylococcus saprophyticus, Staphylococcus fleurettii and Staphylococcus sciuri. Whole-genome sequencing revealed a large variety of antimicrobial resistance genes and SCCmec elements were present, including mecA and mecC alleles. Potentially zoonotic methicillin-resistance S. aureus were found at a low prevalence (0.83% of sampled dairy farms). Whole-genome sequencing also provided evidence for the mobility of a primordial mec gene complex, independently of a SCCmec element, which appears to have been acquired by S. saprophyticus from S. fleurettii. CONCLUSIONS: These data give new insight into the epidemiology of veterinary methicillin-resistant staphylococci to inform future surveillance and zoonotic risk evaluation. Our data indicate that MRSA has likely decreased in prevalence since earlier survey work in England and Wales during 2011-12 and highlights the diversity of methicillin resistance and other resistance determinants among bovine-associated staphylococci with implications for veterinary and human medicine.


Subject(s)
Methicillin Resistance , Milk/microbiology , Staphylococcus/isolation & purification , Animals , Cattle , England/epidemiology , Microbial Sensitivity Tests , Prevalence , Staphylococcus/classification , Wales/epidemiology
4.
J Contam Hydrol ; 226: 103540, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31434016

ABSTRACT

Surface/ground waters could be polluted when rain-water and/or snow-melt water infiltrate through waste rock piles at mine sites and dissolve secondary minerals (salts) from rock surfaces. It is important to reduce solute loading by the optimal configuration of waste rock piles. This requires the proper definition and determination of the characteristic properties of waste rock piles in terms of metal leaching and, in particular, rate control mechanisms and scaling laws, and their dependence upon configuration variables. For revealing these characteristic properties this paper proposes a pile-scale C-Q relation: C = Cs(1 - e-P/Q), (P ≡ kλßψ), where C and Cs are respectively solute concentration and particle's saturation concentration, Q is the flow rate of the water through a waste rock pile, k represents the effective or average dissolution coefficient of a mineral specie from rock surfaces, ß represents rock pile depth, λ represents the ratio of the sum of the surface areas of rocks to the volume that the rocks occupy, and ψ is the sum of the cross-sections of water-flow channels in a waste rock pile. The two characteristic properties revealed by the C-Q relation are: (1) P, the product of k, λ, ß, and ψ (P ≡ kλßψ), which is the characteristic property of a waste rock pile in terms of metal leaching, named here the solute production potential; and (2) the ratio of P to Q, P/Q, a non-dimensional number, designated as α (α ≡ P/Q), named here the rate control quotient, which is the scaling law and the rate control mechanism indicator. The value of α quantitatively indicates what controls the rate of mineral dissolution, and it also relates smaller-scale metal-leaching testing results to their corresponding full scales. When α becomes small, say α < 0.5, the rate of solute production potential P becomes in control, and the solute loading is nearly independent of Q; when α becomes larger, say α > 2.5, solute concentration would become close to its saturation concentration Cs, and Q determines solute loading (that is, the solute loading is proportional to Q). When 0.5 < α < 2.5, both Q and P are in control, a mixed control mechanism. The 20 years of measurements of mine drainage chemistry from the main waste rock piles at the Equity Silver mine, BC, Canada, are used to illustrate how to determine the two characteristic properties P and α, and how well they are able to describe the waste rock piles in terms of metal leaching.


Subject(s)
Groundwater , Water Pollutants , Canada , Metals , Models, Theoretical
5.
Microb Genom ; 4(8)2018 08.
Article in English | MEDLINE | ID: mdl-29916803

ABSTRACT

Species of the genus Macrococcus are widespread commensals of animals but are becoming increasingly recognised as veterinary pathogens. They can encode methicillin resistance and are implicated in its spread to the closely-related, but more pathogenic, staphylococci. In this study we have identified 33 isolates of methicillin-resistant Macrococcus caseolyticus from bovine bulk tank milk from England and Wales. These isolates were characterised to provide insight into the molecular epidemiology of M. caseolyticus and to discern the genetic basis for their methicillin resistance. Antimicrobial susceptibility testing was performed by Vitek2 and disc diffusion. Isolates were whole-genome sequenced to evaluate phylogenetic relationships and the presence of methicillin resistance determinants, mecA-D. All 33 isolates were phenotypically methicillin-resistant according to cefoxitin disc diffusion, cefoxitin Etest and oxacillin resistance assessed by Vitek2. In contrast only a single isolate was resistant in the Vitek2 cefoxitin screen. Twenty-seven isolates were positive for mecD and six were positive for mecB. mecA and mecC were not detected. The results of phylogenetic analysis indicated that these methicillin-resistant isolates represented a heterogeneous population with both mecB and mecD found in diverse isolates. Isolates had a widespread distribution across the sampled region. Taken together with the role of M. caseolyticus in veterinary infections, including bovine mastitis, and in the potential spread of methicillin resistance to more pathogenic staphylococci, this work highlights the need to better understand their epidemiology and for increased awareness among veterinary microbiology laboratories.


Subject(s)
Genome, Bacterial , Mastitis, Bovine/microbiology , Methicillin Resistance/genetics , Phylogeny , Staphylococcaceae/genetics , Animals , Anti-Bacterial Agents/pharmacology , Cattle , England , Female , Microbial Sensitivity Tests , Milk/microbiology , Staphylococcaceae/growth & development , Staphylococcaceae/isolation & purification , Wales
6.
Langmuir ; 34(7): 2425-2431, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29361826

ABSTRACT

The characterization of biofunctionalized surfaces such as alkanethiol self-assembled monolayers (SAMs) on gold modified with DNA or other biomolecules is a challenging analytical problem, and access to a routine method is desirable. Despite substantial investigation from structural and mechanistic perspectives, robust and high-throughput metrology tools for SAMs remain elusive but essential for the continued development of these devices. We demonstrate that scanning electron microscopy (SEM) can provide image contrast of the molecular interface during SAM functionalization. The high-speed, large magnification range, and ease of use make this widely available technique a powerful platform for measuring the structure and composition of SAM surfaces. This increased throughput allows for a better understanding of the nonideal spatial heterogeneity characteristic of SAMs utilized in real-world conditions. SEM image contrast is characterized through the use of fluorescently labeled DNA, which enables correlative SEM and fluorescence microscopy. This allows identification of the DNA-modified regions at resolutions that approach the size of the biomolecule. The effect of electron beam irradiation dose is explored, which leads to straightforward lithographic patterning of DNA SAMs with nanometer resolution and with control over the surface coverage of specifically adsorbed DNA.


Subject(s)
DNA/chemistry , Gold , Microscopy, Electron, Scanning , Microscopy, Fluorescence , DNA/ultrastructure , Gold/chemistry , Surface Properties
7.
Langmuir ; 33(45): 12887-12896, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29058912

ABSTRACT

Manipulating the composition of a mixed alkylthiol self-assembled monolayer (SAM) modified gold surface using both electrochemical and electroless methods is demonstrated. Through the use of fluorophore labeled thiolated DNA and in situ fluorescence microscopy with a gold single crystal bead electrode, a procedure was developed to study and quantify the selective desorption of an alkylthiolate SAM. This method enabled a self-consistent measurement of the removal of the SAM from the 111 surface compared to the 100 surface region at various potentials. A 20-fold increase in the electrochemical removal and replacement of the SAM from the 111 surface over the 100 surface was realized at -0.8 V/AgAgCl. A related procedure was developed for the solution-based electroless removal of the SAM using NaBH4 achieving a similar selectivity at the same potential. Unfortunately, in the electroless process fine control over the reducing potential was difficult to achieve. In addition, working in the presence of O2 complicates the solution potential measurement due to depolarization by the reduction of O2, resulting in a less clear relationship between selectivity and measured solution potential. Interestingly, the electrochemical method was not disturbed by the presence of O2. In preparation for work with Au nanorods, electrochemical measurements were performed in electrolyte that included 1 mM CTAB and was found to not interfere with this method. Preliminary results are promising for using this methodology for treatment of acid-terminated alkylthiol modified Au nanorods.

8.
Icarus ; Volume 292: 74-85, 2017 Apr 02.
Article in English | MEDLINE | ID: mdl-32367891

ABSTRACT

We find that the reflectance of the lunar surface within 5 ° of latitude of the South Pole increases rapidly with decreasing temperature, near ~110K, behavior consistent with the presence of surface water iceThe North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5° from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10° to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al. 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200K and possibly at 300K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. 2015 based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

9.
Langmuir ; 32(38): 9790-6, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27594307

ABSTRACT

Nanoparticles with well-defined interfacial energy and wetting properties are needed for a broad range of applications involving nanoparticle self-assembly including the formation of superlattices, stability of Pickering emulsions, and for the control of nanoparticle interactions with biological membranes. Theoretical, simulated, and recent experimental studies have found nanometer-scale chemical heterogeneity to have important effects on hydrophobic interactions. Here we report the study of 4 nm gold nanoparticles with compositionally well-defined mixed ligand shells of hydroxyl-(OH) and methyl-(CH3) terminated alkylthiols as Langmuir films. Compositions ranging from 0-25% hydroxyl were examined and reveal nonmonotonic changes in particle hydrophobicity at the air-water interface. Unlike nanoparticles capped exclusively with a methyl-terminated alkylthiol, extensive particle aggregation is found for ligand shells containing <2% hydroxyl-terminated chains. This aggregation was lessened upon increasing the quantity of OH-terminated chains. Nanoparticles capped with 25% OH yield films of well-separated nanoparticles exhibiting a fluid-phase regime in the surface pressure vs area isotherm. Compression-expansion hysteresis, monolayer collapse, and mean nanoparticle area measurements support the TEM-observed changes in film morphology. Such clear changes in the hydrophobicity of nanoparticles based on very small changes in the ligand shell composition are shown to impact the process of interfacial nanoparticle self-assembly and are an important demonstration of nanoscale wetting with consequences in both materials and biological applications of nanoparticles that require tunable hydrophobicity.

10.
PLoS One ; 11(3): e0151458, 2016.
Article in English | MEDLINE | ID: mdl-26963381

ABSTRACT

In addition to being an important human pathogen, Staphylococcus aureus is able to cause a variety of infections in numerous other host species. While the S. aureus strains causing infection in several of these hosts have been well characterised, this is not the case for companion rabbits (Oryctolagus cuniculus), where little data are available on S. aureus strains from this host. To address this deficiency we have performed antimicrobial susceptibility testing and genome sequencing on a collection of S. aureus isolates from companion rabbits. The findings show a diverse S. aureus population is able to cause infection in this host, and while antimicrobial resistance was uncommon, the isolates possess a range of known and putative virulence factors consistent with a diverse clinical presentation in companion rabbits including severe abscesses. We additionally show that companion rabbit isolates carry polymorphisms within dltB as described as underlying host-adaption of S. aureus to farmed rabbits. The availability of S. aureus genome sequences from companion rabbits provides an important aid to understanding the pathogenesis of disease in this host and in the clinical management and surveillance of these infections.


Subject(s)
Bacterial Proteins/genetics , Membrane Transport Proteins/genetics , Polymorphism, Genetic , Staphylococcal Infections/genetics , Staphylococcus aureus/genetics , Animals , Humans , Rabbits , Staphylococcus aureus/isolation & purification
11.
Pain Med ; 6(1): 80-7, 2005.
Article in English | MEDLINE | ID: mdl-15669953

ABSTRACT

BACKGROUND: Research on disparities in the treatment of pain has shown that minorities receive less aggressive pain management than non-minorities. While reasons include physician bias, the focus of this study was to examine whether differences in pain reporting behavior might occur when pain is reported to individuals of a different race or gender. OBJECTIVE: To test whether gender and racial concordance might influence pain reporting and pain behavior in a laboratory setting. DESIGN/SETTING: By using a two (subject race)-by-two (subject gender)-by-two (experimenter race)-by two (experimenter gender) quasi-experimental design, pain was assessed in a laboratory through a standard cold pressor task administered by someone whose gender and/or race was similar or dissimilar. SUBJECTS: Subjects were 343 (156 men; 187 women) undergraduates whose ages ranged from 17 to 43 years (mean 20.27 years). OUTCOME MEASURES: Pain tolerance was assessed by total immersion time in the ice bath. Pain ratings were obtained by using Gracely scales, which rate the intensity and unpleasantness of the task. RESULTS: Total immersion time was shorter for both blacks and women, and both blacks and women reported higher pain intensity and unpleasantness. Racial and gender concordance did not influence pain reporting or pain tolerance, but interactions between subject race and experimenter gender, as well as subject gender and experimenter race, were revealed. CONCLUSIONS: Racial and gender concordance did not influence pain reporting; however, pain reporting was influenced by interactions between gender and race in the subject-experimenter dyads.


Subject(s)
Attitude , Pain , Professional Role/psychology , Racial Groups/psychology , Adolescent , Adult , Female , Humans , Male , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL