Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; PP2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38090864

ABSTRACT

OBJECTIVE: Current socket-based methods of prosthetic limb attachment are responsible for many of the dominant problems reported by persons with amputation. In this work, we introduce a new paradigm for attachment via electromagnetic attraction between a bone-anchored ferromagnetic implant and an external electromagnet. Our objective was to develop a design framework for electromagnetic attachment, and to evaluate this framework in the context of transfemoral amputation. METHODS: We first used inverse dynamics to calculate the forces required to suspend a knee-ankle-foot prosthesis during gait. We then conducted cadaveric dissections to inform implant geometry and design a surgical methodology for covering the implant. We also developed an in silico framework to investigate how electromagnet design affects system performance. Simulations were validated against benchtop testing of a custom-built electromagnet. RESULTS: The physical electromagnet matched simulations, with a root-mean-square percentage error of 4.2% between measured and predicted forces. Using this electromagnet, we estimate that suspension of a prosthesis during gait would require 33 W of average power. After 200 and 1000 steps of simulated walking, the temperature at the skin would increase 2.3℃ and 15.4℃ relative to ambient, respectively. CONCLUSION: Our design framework produced an implant and electromagnet that could feasibly suspend a knee-ankle-foot prosthesis during short walking bouts. Future work will focus on optimization of this system to reduce heating during longer bouts. SIGNIFICANCE: This work demonstrates the initial feasibility of an electromagnetic prosthetic attachment paradigm that has the potential to increase comfort and improve residual limb health for persons with amputation.

2.
IEEE Trans Biomed Eng ; 68(5): 1569-1578, 2021 05.
Article in English | MEDLINE | ID: mdl-33710951

ABSTRACT

The accurate classification of ambulation modes and estimation of walking parameters is a challenging problem that is key to many applications. Knowledge of the user's state can enable rehabilitative devices to adapt to changing conditions, while in a clinical setting it can provide physicians with more detailed patient activity information. This study describes the development and optimization process of a combined locomotion mode classifier and environmental parameter estimator using machine learning and wearable sensors. A detailed analysis of the best sensor types and placements for each problem is also presented to provide device designers with information on which sensors to prioritize for their application. For this study, 15 able-bodied subjects were unilaterally instrumented with inertial measurement unit, goniometer, and electromyography sensors and data were collected for extensive ranges of level-ground, ramp, and stair walking conditions. The proposed system classifies steady state ambulation modes with 99% accuracy and ambulation mode transitions with 96% accuracy, along with estimating ramp incline within 1.25 degrees, stair height within 1.29 centimeters, and walking speed within 0.04 meters per second. Mechanical sensors (inertial measurement units, goniometers) are found to be most important for classification, while goniometers dominate ramp incline and stair height estimation, and speed estimation is performed largely with a single inertial measurement unit. The feature tables and Matlab code to replicate the study are published as supplemental materials.


Subject(s)
Walking , Wearable Electronic Devices , Electromyography , Humans , Locomotion , Machine Learning
3.
J Biomech ; 119: 110320, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33677231

ABSTRACT

We introduce a novel dataset containing 3-dimensional biomechanical and wearable sensor data from 22 able-bodied adults for multiple locomotion modes (level-ground/treadmill walking, stair ascent/descent, and ramp ascent/descent) and multiple terrain conditions of each mode (walking speed, stair height, and ramp inclination). In this paper, we present the data collection methods, explain the structure of the open dataset, and report the sensor data along with the kinematic and kinetic profiles of joint biomechanics as a function of the gait phase. This dataset offers a comprehensive source of locomotion information for the same set of subjects to motivate applications in locomotion recognition, developments in robotic assistive devices, and improvement of biomimetic controllers that better adapt to terrain conditions. With such a dataset, models for these applications can be either subject-dependent or subject-independent, allowing greater flexibility for researchers to advance the field.


Subject(s)
Gait , Walking , Adult , Biomechanical Phenomena , Humans , Locomotion , Lower Extremity
SELECTION OF CITATIONS
SEARCH DETAIL