Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 381
Filter
1.
Polymers (Basel) ; 16(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39274126

ABSTRACT

The development of functional foods is a viable alternative for the prevention of numerous diseases. However, the food industry faces significant challenges in producing functional foods based on probiotics due to their high sensitivity to various processing and gastrointestinal tract conditions. This study aimed to evaluate the effect of the operational conditions during the extrusion encapsulation process using vibrating technology on the viability of Lactobacillus fermentum K73, a lactic acid bacterium with hypocholesterolemia probiotic potential. An optimal experimental design approach was employed to produce sweet whey-sodium alginate (SW-SA) beads with high bacterial content and good morphological characteristics. In this study, the effects of frequency, voltage, and pumping rate were optimized for a 300 µm nozzle. The microspheres were characterized using RAMAN spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. The optimal conditions for bead production were found: 70 Hz, 250 V, and 20 mL/min with a final cell count of 8.43 Log10 (CFU/mL). The mean particle diameter was 620 ± 5.3 µm, and the experimental encapsulation yield was 94.3 ± 0.8%. The INFOGEST model was used to evaluate the survival of probiotic beads under gastrointestinal tract conditions. Upon exposure to in vitro conditions of oral, gastric, and intestinal phases, the encapsulated viability of L. fermentum was 7.6 Log10 (CFU/mL) using the optimal encapsulation parameters, which significantly improved the survival of probiotic bacteria during both the encapsulation process and under gastrointestinal conditions compared to free cells.

2.
Dalton Trans ; 53(40): 16541-16556, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39327887

ABSTRACT

Selective recognition and sensing of catecholamine-based neurotransmitters by fluorescent synthetic receptors capable of operating in pure water is a central topic of modern supramolecular chemistry that impacts biological and analytical chemistry. Despite advances achieved in the recognition of some neurotransmitters such as dopamine, little effort has been invested in the optical recognition of other neurotransmitters of paramount importance in biochemistry and medicinal chemistry such as the drug L-dihydroxy-phenylalanine (levodopa). Herein, a cationic Cu(II)-terpyridine complex bearing an intramolecular fluorescent quinolinium ring covalently linked to phenylboronic acid (CuL1) was synthesized, structurally described by single-crystal X-ray diffraction and studied in-depth as a fluorescent receptor for neurotransmitters in water. The complex CuL1 was designed to act as a receptor for levodopa through two Lewis acids of different natures (Cu(II) and B atoms) as cooperative binding points. The receptor CuL1 was found to have a strongly acidified -B(OH)2 group (pKa = 6.2) and exceptionally high affinity for levodopa (K = 4.8 × 106 M-1) with selectivity over other related neurotransmitters such as dopamine, epinephrine, norepinephrine and nucleosides in the micromolar concentration range at physiological pH. Such levodopa affinity/selectivity for a boronic acid-based receptor in water is still rare. On the basis of spectroscopic tools (11B NMR, UV-vis, EPR, and fluorescence), high-resolution ESI-MS, crystal structure, and DFT calculations, the interaction mode of CuL1 with levodopa is proposed in a 1 : 1 model using two-point recognition involving a boronate-catechol esterification and a coordination bond Cu(II)-carboxylate. Furthermore, a visual sensing ensemble was constructed using CuL1 and the commercial fluorescent dye eosin Y. Levodopa is efficiently detected by the displacement of the eosin Y bound to the Cu(II)-receptor, monitoring its green emission. The use of Cu(II)-boronate complexes for fast and selective neurotransmitter sensing was unexplored until now.


Subject(s)
Boronic Acids , Coordination Complexes , Copper , Water , Boronic Acids/chemistry , Water/chemistry , Copper/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Models, Molecular , Levodopa/chemistry , Molecular Structure , Binding Sites
3.
Molecules ; 29(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39339416

ABSTRACT

Triacontanol is a long-chain primary alcohol derived from policosanol, known for its diverse biological activities, including functioning as a plant growth regulator and exhibiting anti-inflammatory and antitumoral effects. However, its application is limited due to its high hydrophobicity, resulting in poor absorption and reduced therapeutic effectiveness. A potential solution to this problem is the use of niosomes. Niosomes are carriers composed of non-ionic surfactants, cholesterol, charge-inducing agents, and a hydration medium. They are effective in encapsulating drugs, improving their solubility and bioavailability. The objective of this study was to optimize and synthesize nano-niosomes for the encapsulation of triacontanol. Niosomes were synthesized using a thin-film hydration method combined with ultrasonication, following a Box-Behnken design. Niosomes were characterized using various techniques including dynamic light scattering, Fourier-transform infrared spectroscopy (FTIR), confocal microscopy, high-resolution scanning electron microscopy, and transmission electron microscopy (TEM). Formulation 14 of niosomes achieved the desired size, polydispersity index (0.198 ± 0.008), and zeta potential (-31.28 ± 1.21). FTIR analysis revealed a characteristic signal in the 3400-300 cm-1 range, indicating intermolecular interactions due to a bifurcated hydrogen bond between cholesterol and S60. Confocal microscopy confirmed the presence of triacontanol through Nile Red fluorescence. TEM revealed the spherical structure of niosomes.


Subject(s)
Fatty Alcohols , Liposomes , Liposomes/chemistry , Fatty Alcohols/chemistry , Particle Size , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Drug Carriers/chemistry , Solubility , Drug Compounding/methods , Cholesterol/chemistry , Surface-Active Agents/chemistry
4.
Vet Parasitol ; 331: 110282, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39116545

ABSTRACT

This study assessed the in vitro anthelmintic activity of ethyl acetate extract (Cn-EtOAc) and its bioactive fractions (CnR3 and CnR5) obtained from Chamaecrista nictitans aerial parts against two Haemonchus contortus (Hc) isolates, one resistant (strain HcIVM-R) and another susceptible (strain HcIVM-S) to ivermectin. Ferulic acid and p-coumaric acid were identified in the bioactive fractions; therefore, their commercial standards were also assessed. A colocalization analysis between the ferulic acid commercial standard and eggs of the HcIVM-R strain was performed using confocal laser scanning microscopy and the ImageJ program. The ovicidal effects of the Cn-EtOAc extract, bioactive fractions and commercial compounds were tested through the egg hatching inhibition (EHI) assay on H. contortus isolates HcIVM-R and HcIVM-S. The Cn-EtOAc caused 88 % and 92 % EHI at 5000 µg/mL on HcIVM-R and HcIVM-S, respectively. Fractions CnR3 and CnR5 displayed the highest ovicidal activity against HcIVM-S, with effective concentrations (EC90) of 2134 and 601 µg/mL, respectively. Meanwhile, the commercial standards ferulic acid and p-coumaric acid also resulted in higher effectiveness on the same strain, with EC90 of 57.5 and 51.1 µg/mL. A colocalization analysis of ferulic acid and eggs of HcIVM-R revealed that this compound is localized to the cuticle surface of the embryo inside the egg parasite. The results demonstrated that both ferulic and p-coumaric acids interrupt the egg-hatching processes of the two Hc isolates. Both phenolic acids isolated from C. nictitans and commercial standards exhibited the best anthelmintic effect on HcIVM-S. These findings indicate that the phenolic acids were less effective in egg hatch inhibiting on the HcIVM-R strain compared to the HcIVM-S strain.


Subject(s)
Anthelmintics , Coumaric Acids , Haemonchus , Plant Extracts , Animals , Haemonchus/drug effects , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Anthelmintics/pharmacology , Anthelmintics/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ovum/drug effects
5.
World J Plast Surg ; 13(2): 77-81, 2024.
Article in English | MEDLINE | ID: mdl-39193236

ABSTRACT

Hypopharyngeal carcinoma is one of the most aggressive primary head and neck cancers, often managed through partial or total laryngopharyngectomy. Reconstruction after such surgeries remains a challenging procedure that often requires the use of free flaps. A 63-year-old male patient with in-situ squamous cell carcinoma of the left vocal cord treated with total pharyngolaryngectomy and primary reconstruction with a left radial forearm free flap, complicated by flap necrosis, which ended up in dismantling and gastrostomy. He was referred to the Plastic and Reconstructive Surgery Department at Centro Medico Nacional 20 de Noviembre, Mexico in 2023 to assess the reconstructive options for the hypopharynx and cervical esophagus defect. A tubular right radial forearm free flap was designed forming the anterior wall of the hypopharynx and cervical esophagus and a posterior wall for the external defect. Twelve months after his surgery, he continues tolerating oral intake without signs of stenosis or tumor recurrence. The objective in this case was based on restoring the continuity of the digestive tract and swallowing function, as well as providing skin coverage of the defects, and preventing serious complications. The radial forearm free flap has versatility in the tubular construction and a low leak rate, as well as an adequate skin island size. Conclusion: The pharyngoesophageal reconstruction with a tubed forearm free flap has favorable outcomes for restoring the gastrointestinal tract without further complications.

6.
Nutrients ; 16(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39203796

ABSTRACT

Gut microbiota disturbances may influence cognitive function, increasing uremic toxins and inflammation in dialysis patients; therefore, we aimed to evaluate the association of the gut microbiota profile with cognitive impairment (CI) in patients on automated peritoneal dialysis (APD). In a cross-sectional study, cognitive function was evaluated using the Montreal Cognitive Assessment in 39 APD patients and classified as normal cognitive function and CI. The gut microbiota was analyzed using the 16S rRNA gene sequencing approach. All patients had clinical, biochemical and urea clearance evaluations. Eighty-two percent of patients were men, with a mean age of 47 ± 24 years and 11 (7-48) months on PD therapy; 64% had mild CI. Patients with CI were older (53 ± 16 vs. 38 ± 14, p = 0.006) and had a higher frequency of diabetes mellitus (56% vs. 21%, p = 0.04) and constipation (7% vs. 48%, p = 0.04) and lower creatinine concentrations (11.3 ± 3.7 vs. 14.9 ± 5.4, p = 0.02) compared to normal cognitive function patients. Patients with CI showed a preponderance of S24_7, Rikenellaceae, Odoribacteraceae, Odoribacter and Anaerotruncus, while patients without CI had a greater abundance of Dorea, Ruminococcus, Sutterella and Fusobacteria (LDA score (Log10) > 2.5; p < 0.05). After glucose and age adjustment, Odoribacter was still associated with CI. In conclusion, patients with CI had a different gut microbiota characterized by the higher abundance of indole-producing and mucin-fermenting bacteria compared to normal cognitive function patients.


Subject(s)
Cognitive Dysfunction , Gastrointestinal Microbiome , Peritoneal Dialysis , Humans , Male , Female , Middle Aged , Peritoneal Dialysis/adverse effects , Cognitive Dysfunction/microbiology , Cognitive Dysfunction/etiology , Cross-Sectional Studies , Adult , Aged , RNA, Ribosomal, 16S , Cognition
7.
Vitam Horm ; 126: 77-96, 2024.
Article in English | MEDLINE | ID: mdl-39029977

ABSTRACT

Sleep is a physiological process that preserves the integrity of the neuro-immune-endocrine network to maintain homeostasis. Sleep regulates the production and secretion of hormones, neurotransmitters, cytokines and other inflammatory mediators, both at the central nervous system (CNS) and at the periphery. Sleep promotes the removal of potentially toxic metabolites out of the brain through specialized systems such as the glymphatic system, as well as the expression of specific transporters in the blood-brain barrier. The blood-brain barrier maintains CNS homeostasis by selectively transporting metabolic substrates and nutrients into the brain, by regulating the efflux of metabolic waste products, and maintaining bidirectional communication between the periphery and the CNS. All those processes are disrupted during sleep loss. Brain endothelial cells express the blood-brain barrier phenotype, which arises after cell-to-cell interactions with mural cells, like pericytes, and after the release of soluble factors by astroglial endfeet. Astroglia, pericytes and brain endothelial cells respond differently to sleep loss; evidence has shown that sleep loss induces a chronic low-grade inflammatory state at the CNS, which is associated with blood-brain barrier dysfunction. In animal models, blood-brain barrier dysfunction is characterized by increased blood-brain barrier permeability, decreased tight junction protein expression and pericyte detachment from the capillary wall. Blood-brain barrier dysfunction may promote defects in brain clearance of potentially neurotoxic metabolites and byproducts of neural physiology, which may eventually contribute to neurodegenerative diseases. This chapter aims to describe the cellular and molecular mechanisms by which sleep loss modifies the function of the blood-brain barrier.


Subject(s)
Blood-Brain Barrier , Sleep Deprivation , Blood-Brain Barrier/metabolism , Humans , Animals , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Endothelial Cells/metabolism
8.
Medicina (Kaunas) ; 60(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39064575

ABSTRACT

Background and Objectives: Congenital thyroid dyshormonogenesis is caused by alterations in the synthesis of thyroid hormones in a newborn. Additionally, 10 to 20% of these cases are hereditary, caused by defects in proteins involved in hormonal synthesis. One of the most common causes is mutations in the thyroid peroxidase (TPO) enzyme gene, an autosomal recessive disease. We aimed to detect mutations of the TPO gene in 12 Chilean patients with congenital hypothyroidism due to dyshormonogenesis (CHD) and to characterize these patients clinically and molecularly. Materials and Methods: Twelve patients under 20 years of age with CHD, controlled at San Juan de Dios Hospital in Santiago, Chile, were selected according to the inclusion criteria: elevated neonatal TSH, persistent hypothyroidism, and thyroid normotopic by imaging study. Those with deafness, Down syndrome, and central or transient congenital hypothyroidism were excluded. Blood samples were taken for DNA extraction, and the 17 exons and exon-intron junctions of the TPO gene were amplified by PCR. The PCR products were sequenced by Sanger. Results: Two possibly pathogenic mutations of the TPO gene were detected: c.2242G>A (p.Val748Met) and c.1103C>T (p.Pro368Leu). These mutations were detected in 2 of 12 patients (16.6%): 1 was compound heterozygous c.1103C>T/c.2242G>A, and the other was heterozygous for c.2242G>A. In the diagnostic confirmation test, both patients presented diffuse hyper-uptake goiter on thyroid scintigraphy and high TSH in venous blood (>190 uIU/mL). Conclusions: The frequency of patients with possibly pathogenic mutations in TPO with CHD was 16.6%. Its study would allow for genetic counseling to be offered to the families of affected patients.


Subject(s)
Congenital Hypothyroidism , Iodide Peroxidase , Iron-Binding Proteins , Mutation , Humans , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/blood , Chile , Iodide Peroxidase/genetics , Female , Male , Iron-Binding Proteins/genetics , Autoantigens/genetics , Infant , Child , Adolescent , Child, Preschool , Infant, Newborn , Thyroid Dysgenesis/genetics , Thyroid Dysgenesis/complications , Thyroid Dysgenesis/blood
9.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062809

ABSTRACT

The study evaluated the effects of Arthrospira maxima phycobiliproteins (PBPs), rosiglitazone (RSG), and 17ß-estradiol (E) on the differentiation process of 3T3-L1 cells and on their regulation of lipogenic and inflammatory gene expression at different stages of the process. The results showed that phycobiliproteins promoted cell proliferation after 24 h of treatment. Furthermore, for all three treatments, the regulation of the highest number of markers occurred on days 6 and 12 of differentiation, regardless of when the treatment was applied. Phycobiliproteins reduced lipid droplet accumulation on days 3, 6, 10, and 13 of the adipogenic process, while rosiglitazone showed no differences compared to the control. On day 6, both phycobiliproteins and rosiglitazone positively regulated Acc1 mRNA. Meanwhile, all three treatments negatively regulated Pparγ and C/ebpα. Phycobiliproteins and estradiol also negatively regulated Ucp1 and Glut4 mRNAs. Rosiglitazone and estradiol, on the other hand, negatively regulated Ppara and Il-6 mRNAs. By day 12, phycobiliproteins and rosiglitazone upregulated Pparγ mRNA and negatively regulated Tnfα and Il-1ß. Additionally, phycobiliproteins and estradiol positively regulated Il-6 and negatively regulated Ppara, Ucp2, Acc1, and Glut4. Rosiglitazone and estradiol upregulate C/ebpα and Ucp1 mRNAs. The regulation exerted by phycobiliproteins on the mRNA expression of the studied markers was dependent on the phase of cell differentiation. The results of this study highlight that phycobiliproteins have an anti-adipogenic and anti-inflammatory effect by reducing the expression of adipogenic, lipogenic, and inflammatory genes in 3T3-L1 cells at different stages of the differentiation process.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Differentiation , Estradiol , Phycobiliproteins , Rosiglitazone , Animals , Mice , Estradiol/pharmacology , Rosiglitazone/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/cytology , Cell Differentiation/drug effects , Adipogenesis/drug effects , Adipogenesis/genetics , Phycobiliproteins/pharmacology , Phycobiliproteins/metabolism , Phycobiliproteins/genetics , Gene Expression Regulation/drug effects , Lipogenesis/drug effects , Lipogenesis/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Cell Proliferation/drug effects , Inflammation/metabolism , Inflammation/genetics , Spirulina
10.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 625-629, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38845702

ABSTRACT

The synthesis, crystallization and characterization of a tri-fluoro-methane-sulfonate salt of 5,10,15,20-tetra-kis-(1-benzyl-pyridin-1-ium-4-yl)-21H,23H-por-phy-rin, C68H54N8 4+·4CF3SO3 -·4H2O, 1·OTf, are reported in this work. The reaction between 5,10,15,20-tetra-kis-(pyridin-4-yl)-21H,23H-porphyrin and benzyl bromide in the presence of 0.1 equiv. of Ca(OH)2 in CH3CN under reflux with an N2 atmosphere and subsequent treatment with silver tri-fluoro-methane-sulfonate (AgOTf) salt produced a red-brown solution. This reaction mixture was filtered and the solvent was allowed to evaporate at room temperature for 3 d to give 1·OTf. Crystal structure determination by single-crystal X-ray diffraction (SCXD) revealed that 1·OTf crystallizes in the space group P21/c. The asymmetric unit contains half a porphyrin mol-ecule, two tri-fluoro-methane-sulfonate anions and two water mol-ecules of crystallization. The macrocycle of tetra-pyrrole moieties is planar and unexpectedly it has coordinated CaII ions in occupational disorder. This CaII ion has only 10% occupancy (C72H61.80Ca0.10F12N8O16S4). The pyridinium rings bonded to methyl-ene groups from porphyrin are located in two different arrangements in almost orthogonal positions between the plane formed by the porphyrin and the pyridinium rings. The crystal structure features cation⋯π inter-actions between the CaII atom and the π-system of the phenyl ring of neighboring mol-ecules. Both tri-fluoro-methane-sulfonate anions are found at the periphery of 1, forming hydrogen bonds with water mol-ecules.

11.
Nutrients ; 16(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38892565

ABSTRACT

BACKGROUND: Gestational weight gain below or above the Institute of Medicine recommendations has been associated with adverse perinatal and neonatal outcomes. Very few studies have evaluated the association between serum and red blood cell folate concentrations and gestational weight gain in adolescents. Additionally, zinc deficiency during pregnancy has been associated with impaired immunity, prolonged labor, preterm and post-term birth, intrauterine growth restriction, low birth weight, and pregnancy-induced hypertension. OBJECTIVE: The purpose of our study is to evaluate the association between serum concentrations of zinc, serum folate, and red blood cell folate, with the increase in gestational weight and the weight and length of the newborn in a group of adolescent mothers from Mexico City. RESULTS: In our study, 406 adolescent-neonate dyads participated. The adolescents' median age was 15.8 years old. The predominant socioeconomic level was middle-low (57.8%), single (57%), 89.9% were engaged in home activities, and 41.3% completed secondary education. Excessive gestational weight gain was observed in 36.7% of cases, while insufficient gestational weight gain was noted in 38.4%. Small for gestational age infants were observed in 20.9% of the sample. Low serum folate (OR 2.1, 95% CI 1.3-3.3), decreased red blood cell folate (OR 1.6, 95% CI 1.0-2.6), and reduced serum zinc concentrations (OR 3.3, 95% CI 2.1-5.2) were associated with insufficient gestational weight gain. Decreased serum zinc levels (OR 1.2, 95% CI 1.2-3.4) were linked to an increased probability of delivering a baby who is small for their gestational age. CONCLUSIONS: Low serum folate, red blood cell folate, and serum zinc concentrations were associated with gestational weight gain and having a small gestational age baby. Both excessive and insufficient gestational weight gain, as well as having a small gestational age baby, are frequent among adolescent mothers.


Subject(s)
Birth Weight , Erythrocytes , Folic Acid , Gestational Weight Gain , Zinc , Humans , Female , Zinc/blood , Zinc/deficiency , Adolescent , Pregnancy , Folic Acid/blood , Infant, Newborn , Mexico , Infant, Small for Gestational Age/blood , Pregnancy in Adolescence/blood
12.
Food Chem ; 458: 140196, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38943953

ABSTRACT

The research aimed to assess the effects of incorporating germinated Lupinus angustifolius flour into corn extrudates for different periods (3, 5, and 7 days), focusing on starch digestibility, morphological structure, thermal, and pasting properties. Extrudate with germinated lupinus flour for 7 days (EG7) significantly increased the content of slowly digestible starch up to 10.56% (p < 0.05). Crystallinity increased up to 20% in extrudates with germinated flour compared to extrudates with ungerminated flour (EUG), observing changes at the molecular level by FTIR that impact the thermal and pasting properties. X-ray diffraction revealed angles of 2θ = 11.31, 16.60, 19.91, and 33.04 as a result of the germination and extrusion processes. Microstructural analysis indicated starch-protein interactions influencing changes in calorimetry, viscosity, X-ray diffraction, and digestibility. PCA allowed establishing that the addition of germinated flours significantly affected the properties and microstructural characteristics of extruded products, potentially affecting digestibility and nutritional quality.


Subject(s)
Digestion , Germination , Lupinus , Starch , X-Ray Diffraction , Zea mays , Zea mays/chemistry , Zea mays/growth & development , Zea mays/metabolism , Lupinus/chemistry , Lupinus/metabolism , Lupinus/growth & development , Starch/chemistry , Starch/metabolism , Flour/analysis , Viscosity , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Food Handling
13.
Microbiol Resour Announc ; 13(6): e0002724, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38771045

ABSTRACT

Urinary tract infections (UTIs) caused by multidrug-resistant and extended-spectrum ß-lactamase-producing uropathogenic Escherichia coli are a worldwide concern. We report the draft genome of E. coli U13824 isolated from a female outpatient with UTI. This genome's availability strengthens the genomic surveillance of antimicrobial resistance and the spreading of these strains.

14.
Sci Rep ; 14(1): 12350, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811600

ABSTRACT

Breast cancer is the most common malignancy in women around the world. Intratumor and intertumoral heterogeneity persist in mammary tumors. Therefore, the identification of biomarkers is essential for the treatment of this malignancy. This study analyzed 28,143 genes expressed in 49 breast cancer cell lines using a Weighted Gene Co-expression Network Analysis to determine specific target proteins for Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes. Sixty-five modules were identified, of which five were characterized as having a high correlation with breast cancer subtypes. Genes overexpressed in the tumor were found to participate in the following mechanisms: regulation of the apoptotic process, transcriptional regulation, angiogenesis, signaling, and cellular survival. In particular, we identified the following genes, considered as hubs: IFIT3, an inhibitor of viral and cellular processes; ETS1, a transcription factor involved in cell death and tumorigenesis; ENSG00000259723 lncRNA, expressed in cancers; AL033519.3, a hypothetical gene; and TMEM86A, important for regulating keratinocyte membrane properties, considered as a key in Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes, respectively. The modules and genes identified in this work can be used to identify possible biomarkers or therapeutic targets in different breast cancer subtypes.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Biomarkers, Tumor/genetics , Cell Line, Tumor , Gene Expression Profiling/methods
15.
Dalton Trans ; 53(20): 8692-8708, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38700377

ABSTRACT

Selective recognition of fructosyl amino acids in water by arylboronic acid-based receptors is a central field of modern supramolecular chemistry that impacts biological and medicinal chemistry. Fructosyl valine (FV) and fructosyl glycyl histidine (FGH) occur as N-terminal moieties of human glycated hemoglobin; therefore, the molecular design of biomimetic receptors is an attractive, but very challenging goal. Herein, we report three novel cationic Zn-terpyridine complexes bearing a fluorescent N-quinolinium nucleus covalently linked to three different isomers of strongly acidified phenylboronic acids (ortho-, 2Zn; meta-, 3Zn and para-, 4Zn) for the optical recognition of FV, FGH and comparative analytes (D-fructose, Gly, Val and His) in pure water at physiological pH. The complexes were designed to act as fluorescent receptors using a cooperative action of boric acid and a metal chelate. Complex 3Zn was found to display the most acidic -B(OH)2 group (pKa = 6.98) and exceptionally tight affinity for FV (K = 1.43 × 105 M-1) with a strong quenching analytical response in the micromolar concentration range. The addition of fructose and the other amino acids only induced moderate optical changes. On the basis of several spectroscopic tools (1H, 11B NMR, UV-Vis, and fluorescence titrations), ESI mass spectrometry, X-ray crystal structure, and DFT calculations, the interaction mode between 3Zn and FV is proposed in a 1 : 1 model through a cooperative two-point recognition involving a sp3 boronate-diol esterification with simultaneous coordination bonding of the carboxylate group of Val to the Zn atom. Fluorescence quenching is attributed to a static complexation photoinduced electron transfer mechanism as evidenced by lifetime experiments. The addition of FGH to 3Zn notably enhanced its emission intensity with micromolar affinity, but with a lower apparent binding constant than that observed for FV. FGH interacts with 3Zn through boronate-diol complexation and coordination of the imidazole ring of His. DFT-optimized structures of complexes 3Zn-FV and 3Zn-FGH show a picture of binding which shows that the Zn-complex has a suitable (B⋯Zn) distance to the two-point recognition with these analytes. Molecular recognition of fructosyl amino acids by transition-metal-based receptors has not been explored until now.


Subject(s)
Boronic Acids , Coordination Complexes , Fluorescent Dyes , Pyridines , Water , Zinc , Zinc/chemistry , Boronic Acids/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Pyridines/chemistry , Water/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Valine/chemistry , Molecular Structure , Histidine/chemistry
16.
Molecules ; 29(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611719

ABSTRACT

Cancer is one of the leading causes of death worldwide, making the search for alternatives for its control a critical issue. In this context, exploring alternatives from natural sources, such as certain vegetables containing a variety of secondary metabolites with beneficial effects on the body and that play a crucial role in the fight against cancer, is essential. Among the compounds with the greatest efficacy in controlling this disease, those with antioxidant activity, particularly phenolic com-pounds, stand out. A remarkable example of this group is protocatechuic acid (PCA), which has been the subject of various revealing research on its activities in different areas. These studies sustain that protocatechuic acid has anti-inflammatory, antimutagenic, antidiabetic, antiulcer, antiviral, antifibrogenic, antiallergic, neuroprotective, antibacterial, anticancer, antiosteoporotic, anti-aging, and analgesic properties, in addition to offering protection against metabolic syndrome and con-tributing to the preservation of hepatic, renal, and reproductive functionality. Therefore, this paper aims to review the biological activities of PCA, focusing on its anticancer potential and its in-volvement in the control of various molecular pathways involved in tumor development, sup-porting its option as a promising alternative for cancer treatment.


Subject(s)
Hydroxybenzoates , Neoplasms , Humans , Hydroxybenzoates/pharmacology , Hydroxybenzoates/therapeutic use , Neoplasms/drug therapy , Phenols
17.
Extremophiles ; 28(2): 25, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664270

ABSTRACT

We surveyed the presence of perchlorate-reducing microorganisms in available metagenomic data of halite environments from the Atacama Desert, an extreme environment characterized by high perchlorate concentrations, intense ultraviolet radiation, saline and oxidizing soils, and severe desiccation. While the presence of perchlorate might suggest a broad community of perchlorate reducers or a high abundance of a dominant taxa, our search reveals a scarce presence. In fact, we identified only one halophilic species, Salinibacter sp003022435, carrying the pcrA and pcrC genes, represented in low abundance. Moreover, we also discovered some napA genes and organisms carrying the nitrate reductase nasB gene, which hints at the possibility of cryptic perchlorate reduction occurring in these ecosystems. Our findings contribute with the knowledge of perchlorate reduction metabolism potentially occurring in halites from Atacama Desert and point towards promising future research into the perchlorate-reducing mechanism in Salinibacter, a common halophilic bacterium found in hypersaline ecosystems, whose metabolic potential remains largely unknown.


Subject(s)
Desert Climate , Extreme Environments , Oxidation-Reduction , Perchlorates , Perchlorates/metabolism , Metagenome , Microbiota
18.
World J Gastroenterol ; 30(9): 1073-1095, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38577191

ABSTRACT

Hepatocrinology explores the intricate relationship between liver function and the endocrine system. Chronic liver diseases such as liver cirrhosis can cause endocrine disorders due to toxin accumulation and protein synthesis disruption. Despite its importance, assessing endocrine issues in cirrhotic patients is frequently neglected. This article provides a comprehensive review of the epidemiology, pathophysiology, diagnosis, and treatment of endocrine disturbances in liver cirrhosis. The review was conducted using the PubMed/Medline, EMBASE, and Scielo databases, encompassing 172 articles. Liver cirrhosis is associated with endocrine disturbances, including diabetes, hypoglycemia, sarcopenia, thyroid dysfunction, hypogonadotropic hypogonadism, bone disease, adrenal insufficiency, growth hormone dysfunction, and secondary hyperaldosteronism. The optimal tools for diagnosing diabetes and detecting hypoglycemia are the oral glucose tolerance test and continuous glucose monitoring system, respectively. Sarcopenia can be assessed through imaging and functional tests, while other endocrine disorders are evaluated using hormonal assays and imaging studies. Treatment options include metformin, glucagon-like peptide-1 analogs, sodium-glucose co-transporter-2 inhibitors, and insulin, which are effective and safe for diabetes control. Established standards are followed for managing hypoglycemia, and hormone replacement therapy is often necessary for other endocrine dysfunctions. Liver transplantation can address some of these problems.


Subject(s)
Diabetes Mellitus , Hypoglycemia , Sarcopenia , Humans , Blood Glucose Self-Monitoring , Sarcopenia/diagnosis , Sarcopenia/etiology , Sarcopenia/therapy , Blood Glucose/metabolism , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Liver Cirrhosis/therapy , Endocrine System/metabolism , Diabetes Mellitus/epidemiology , Insulin/therapeutic use , Hypoglycemia/complications
19.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673804

ABSTRACT

Throughout its lifecycle, Entamoeba histolytica encounters a variety of stressful conditions. This parasite possesses Heat Shock Response Elements (HSEs) which are crucial for regulating the expression of various genes, aiding in its adaptation and survival. These HSEs are regulated by Heat Shock Transcription Factors (EhHSTFs). Our research has identified seven such factors in the parasite, designated as EhHSTF1 through to EhHSTF7. Significantly, under heat shock conditions and in the presence of the antiamoebic compound emetine, EhHSTF5, EhHSTF6, and EhHSTF7 show overexpression, highlighting their essential role in gene response to these stressors. Currently, only EhHSTF7 has been confirmed to recognize the HSE as a promoter of the EhPgp5 gene (HSE_EhPgp5), leaving the binding potential of the other EhHSTFs to HSEs yet to be explored. Consequently, our study aimed to examine, both in vitro and in silico, the oligomerization, and binding capabilities of the recombinant EhHSTF5 protein (rEhHSTF5) to HSE_EhPgp5. The in vitro results indicate that the oligomerization of rEhHSTF5 is concentration-dependent, with its dimeric conformation showing a higher affinity for HSE_EhPgp5 than its monomeric state. In silico analysis suggests that the alpha 3 α-helix (α3-helix) of the DNA-binding domain (DBD5) of EhHSTF5 is crucial in binding to the major groove of HSE, primarily through hydrogen bonding and salt-bridge interactions. In summary, our results highlight the importance of oligomerization in enhancing the affinity of rEhHSTF5 for HSE_EhPgp5 and demonstrate its ability to specifically recognize structural motifs within HSE_EhPgp5. These insights significantly contribute to our understanding of one of the potential molecular mechanisms employed by this parasite to efficiently respond to various stressors, thereby enabling successful adaptation and survival within its host environment.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Entamoeba histolytica , Promoter Regions, Genetic , Protozoan Proteins , Binding Sites , Computer Simulation , Entamoeba histolytica/genetics , Entamoeba histolytica/metabolism , Heat-Shock Response/genetics , Protein Binding , Protein Multimerization , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Response Elements , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
20.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474283

ABSTRACT

Excessive or insufficient gestational weight gain (GWG) leads to diverse adverse maternal and neonatal outcomes. There is evidence that pregestational body mass index (pBMI) plays a role in GWG, but no genetic cause has been identified. In this review, we aim to analyze genotype variants associated with GWG. Results: We identified seven genotype variants that may be involved in GWG regulation that were analyzed in studies carried out in Brazil, Romania, the USA, Turkey, Ukraine, and Canada. Some genetic variants were only associated with GWG in certain races or depending on the pBMI. In women who were obese or overweight before gestation, some genetic variants were associated with GWG. Environmental and genetic factors together showed a greater association with GWG than genetic factors alone; for example, type of diet was observed to have a significant influence. Conclusions: We found little scientific evidence of an association between genotype variants in countries with a high prevalence of women of reproductive age who are overweight and obese, such as in Latin America. GWG may be more dependent on environmental factors than genetic variants. We suggest a deeper study of genetic variants, cytokines, and their possible association with GWG, always with the respective control of potential cofounding factors, such as pBMI, diet, and race.


Subject(s)
Gestational Weight Gain , Overweight , Infant, Newborn , Female , Humans , Male , Pregnancy , Overweight/complications , Weight Gain/physiology , Obesity/complications , Diet , Body Mass Index , Pregnancy Outcome
SELECTION OF CITATIONS
SEARCH DETAIL