Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 13(6): e0027924, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38767349

ABSTRACT

Rhizobium laguerreae is regarded as a promising candidate for biofertilization of legume plants worldwide through its high efficiency in symbiosis. In this paper, we report high-quality sequences of six R. laguerreae strains with total genome completeness from 93.5% to 97.5%.

2.
Life (Basel) ; 13(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38137924

ABSTRACT

Consumers today seek safe functional foods with proven health-promoting properties. Current evidence shows that a healthy diet can effectively alleviate oxidative stress levels and reduce inflammatory markers, thereby preventing the occurrence of many types of cancer, hypertension, and cardiovascular and neurological pathologies. Nevertheless, as fruits and vegetables are mainly consumed fresh, they can serve as vectors for the transmission of pathogenic microorganisms associated with various disease outbreaks. As a result, there has been a surge in interest in the microbiome of fruits and vegetables. Therefore, given the growing interest in sweet cherries, and since their microbial communities have been largely ignored, the primary purpose of this study is to investigate their culturome at various maturity stages for the first time. A total of 55 microorganisms were isolated from sweet cherry fruit, comprising 23 bacteria and 32 fungi species. Subsequently, the selected isolates were molecularly identified by amplifying the 16S rRNA gene and ITS region. Furthermore, it was observed that the communities became more diverse as the fruit matured. The most abundant taxa included Pseudomonas and Ralstonia among the bacteria, and Metschnikowia, Aureobasidium, and Hanseniaspora among the fungi.

3.
Nutrients ; 14(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36364838

ABSTRACT

The bioactivity of natural by-products in food and pharmaceutical applications is the subject of numerous studies. Cherry production and processing generates large amounts of biowaste, most of which is not used. The recovery of these by-products is essential for promoting the circular economy and to improving sustainability in the food industry. In this work, we explored the anti-inflammatory and antimicrobial potential of two different extracts from stems, leaves, and flowers of Portuguese cherries. The anti-inflammatory potential was studied on lipopolysaccharide (LPS)-stimulated mouse macrophages (RAW 264.7) by evaluating the effect of by-products on cellular viability and nitric oxide (NO) production. Disc diffusion and minimum inhibitory concentration (MIC) were used to determine antimicrobial activity. The cherry by-products had no cytotoxic effect on RAW 264.7 cells, and were able to inhibit nitrite production in a dose-dependent manner. Moreover, all aqueous infusions showed good antioxidant activity against NO radicals. Moreover, leaf extracts showed the best activity against most of the strains studied. The results revealed, for the first time, interesting anti-inflammatory and antimicrobial properties of cherry by-products. This could potentially be of interest for their therapeutic use in the treatment of inflammation-related diseases or in controlling the growth of microorganisms.


Subject(s)
Anti-Infective Agents , Prunus avium , Mice , Animals , Plant Extracts/pharmacology , Portugal , Anti-Inflammatory Agents/pharmacology , Anti-Infective Agents/pharmacology
4.
Molecules ; 27(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35630771

ABSTRACT

Nowadays, it is largely accepted that the daily intake of fruits, vegetables, herbal products and derivatives is an added value in promoting human health, given their capacity to counteract oxidative stress markers and suppress uncontrolled pro-inflammatory responses. Given that, natural-based products seem to be a promising strategy to attenuate, or even mitigate, the development of chronic diseases, such as diabetes, and to boost the immune system. Among fruits, cherries and blueberries are nutrient-dense fruits that have been a target of many studies and interest given their richness in phenolic compounds and notable biological potential. In fact, research has already demonstrated that these fruits can be considered functional foods, and hence, their use in functional beverages, whose popularity is increasing worldwide, is not surprising and seem to be a promising and useful strategy. Therefore, the present review reinforces the idea that cherries and blueberries can be incorporated into new pharmaceutical products, smart foods, functional beverages, and nutraceuticals and be effective in preventing and/or treating diseases mediated by inflammatory mediators, reactive species, and free radicals.


Subject(s)
Blueberry Plants , Beverages , Fruit , Functional Food , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
5.
Foods ; 11(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35267384

ABSTRACT

Large amounts of Prunus avium L. by-products result from sweet cherry production and processing. This work aimed to evaluate the mineral content and volatile profiling of the cherry stems, leaves, and flowers of the Saco cultivar collected from the Fundão region (Portugal). A total of 18 minerals were determined by ICP-MS, namely 8 essential and 10 non-essential elements. Phosphorus (P) was the most abundant mineral, while lithium (Li) was detected in trace amounts. Three different preparations were used in this work to determine volatiles: hydroethanolic extracts, crude extracts, and aqueous infusions. A total of 117 volatile compounds were identified using HS-SPME/GC-MS, distributed among different chemical classes: 31 aldehydes, 14 alcohols, 16 ketones, 30 esters, 4 acids, 4 monoterpenes, 3 norisoprenoids, 4 hydrocarbons, 7 heterocyclics, 1 lactone, 1 phenol, and 2 phenylpropenes. Benzaldehyde, 4-methyl-benzaldehyde, hexanal, lilac aldehyde, and 6-methyl-5-hepten-2-one were the major volatile compounds. Differences in the types of volatiles and their respective amounts in the different extracts were found. This is the first study that describes the mineral and volatile composition of Portuguese sweet cherry by-products, demonstrating that they could have great potential as nutraceutical ingredients and natural flavoring agents to be used in the pharmaceutical, cosmetic, and food industries.

6.
Molecules ; 27(1)2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35011501

ABSTRACT

Cherries have largely been investigated due to their high content in phenolics in order to fully explore their health-promoting properties. Therefore, this work aimed to assess, for the first time, the anti-inflammatory potential of phenolic-targeted fractions of the Saco cherry, using RAW 264.7 macrophages stimulated with lipopolysaccharide. Additionally, the cytotoxic effects on gastric adenocarcinoma (AGS), neuroblastoma (SH-SY5Y) and normal human dermal fibroblast (NHDF) cells were evaluated, as well as the ability to protect these cellular models against induced oxidative stress. The obtained data revealed that cherry fractions can interfere with cellular nitric oxide (NO) levels by capturing NO radicals and decreasing inducible nitric oxide synthase and cyclooxygenase-2 expression. Furthermore, it was observed that all cherry fractions exhibited dose-dependent cytotoxicity against AGS cells, presenting cytotoxic selectivity for these cancer cells when compared to SH-SY5Y and NHDF cells. Regarding their capacity to protect cancer cells against oxidative injury, in most assays, the total cherry extract was the most effective. Overall, this study reinforces the idea that sweet cherries can be incorporated into new pharmaceutical products, smart foods and nutraceuticals.


Subject(s)
Adenocarcinoma , Anti-Inflammatory Agents , Antineoplastic Agents, Phytogenic , Cell Proliferation/drug effects , Fruit/chemistry , Neuroblastoma , Plant Extracts/pharmacology , Prunus avium/chemistry , Stomach Neoplasms , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Humans , Mice , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , RAW 264.7 Cells , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism
7.
Foods ; 10(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34828905

ABSTRACT

Cancer is the second cause of death worldwide. Among cancers, hepatocellular carcinoma is one of the most prevalent. Evidence indicates that the daily consumption of fruits and vegetables can prevent the onset of various cancers due to the presence of bioactive compounds. Sweet cherries are known for their richness in phenolics, including anthocyanins, which are the major constituents, and presumably, the key contributors to their biological activity. Therefore, the present study aimed to evaluate the effects of three different cherry fractions on human hepatocellular carcinoma (HepG2) cells viability and effectiveness to improve the redox status of these cells under oxidative damage induced by nitric oxide radicals and hydrogen peroxide. Phenolic characterization of fractions was performed by Fourier transform infrared spectroscopy. The obtained results indicated that enriched phenolic fractions of sweet cherries (cv. Saco, can impair cell viability and suppress cells growth after 72 h of exposure, promoting necrosis at the highest tested concentrations (>50 µg/mL). Additionally, fractions also showed the capacity to protect these cells against oxidative injury by capturing radicals before they can attack cells' membrane and by modulating reactive oxygen and nitrogen species generation, as demonstrated by bioinformatic tools.

8.
Foods ; 9(9)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32847018

ABSTRACT

Lettuce (Lactuca sativa L.) is a widely consumed horticultural species. Its significance lies in a high polyphenolic compound content, including phenolic acids and flavonols. In this work, we have probed the ability of Rhizobium laguerreae HUTR05 to promote lettuce growth, under in vitro and greenhouse conditions (both non-saline and saline conditions). This strain has shown several in vitro plant growth promotion mechanisms, as well as capacity to colonize lettuce seedlings roots. We have analyzed the effect of the rhizobacterium inoculation on mineral and bioactive compounds in lettuce, under greenhouse conditions, and found a rise in the content of certain phenolic acids and flavonoids, such as derivatives of caffeoyl acid and quercetin. The genome analysis of the strain has shown the presence of genes related to plant growth-promoting rhizobacteria (PGPR) mechanisms, defense from saline stress, and phenolic compound metabolism (such as naringenin-chalcone synthase or phenylalanine aminotransferase).

SELECTION OF CITATIONS
SEARCH DETAIL
...