Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Proc Natl Acad Sci U S A ; 121(37): e2408699121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39240964

ABSTRACT

In plants, development of all above-ground tissues relies on the shoot apical meristem (SAM) which balances cell proliferation and differentiation to allow life-long growth. To maximize fitness and survival, meristem activity is adjusted to the prevailing conditions through a poorly understood integration of developmental signals with environmental and nutritional information. Here, we show that sugar signals influence SAM function by altering the protein levels of SHOOT MERISTEMLESS (STM), a key regulator of meristem maintenance. STM is less abundant in inflorescence meristems with lower sugar content, resulting from plants being grown or treated under limiting light conditions. Additionally, sucrose but not light is sufficient to sustain STM accumulation in excised inflorescences. Plants overexpressing the α1-subunit of SUCROSE-NON-FERMENTING1-RELATED KINASE 1 (SnRK1) accumulate less STM protein under optimal light conditions, despite higher sugar accumulation in the meristem. Furthermore, SnRK1α1 interacts physically with STM and inhibits its activity in reporter assays, suggesting that SnRK1 represses STM protein function. Contrasting the absence of growth defects in SnRK1α1 overexpressors, silencing SnRK1α in the SAM leads to meristem dysfunction and severe developmental phenotypes. This is accompanied by reduced STM transcript levels, suggesting indirect effects on STM. Altogether, we demonstrate that sugars promote STM accumulation and that the SnRK1 sugar sensor plays a dual role in the SAM, limiting STM function under unfavorable conditions but being required for overall meristem organization and integrity under favorable conditions. This highlights the importance of sugars and SnRK1 signaling for the proper coordination of meristem activities.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Meristem , Protein Serine-Threonine Kinases , Signal Transduction , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Meristem/metabolism , Meristem/growth & development , Meristem/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Sucrose/metabolism , Sugars/metabolism , Light , Homeodomain Proteins
2.
Nat Commun ; 15(1): 6930, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138172

ABSTRACT

Plants flower in response to environmental signals. These signals change the shape and developmental identity of the shoot apical meristem (SAM), causing it to form flowers and inflorescences. We show that the increases in SAM width and height during floral transition correlate with changes in size of the central zone (CZ), defined by CLAVATA3 expression, and involve a transient increase in the height of the organizing center (OC), defined by WUSCHEL expression. The APETALA2 (AP2) transcription factor is required for the rapid increases in SAM height and width, by maintaining the width of the OC and increasing the height and width of the CZ. AP2 expression is repressed in the SAM at the end of floral transition, and extending the duration of its expression increases SAM width. Transcriptional repression by SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) represents one of the mechanisms reducing AP2 expression during floral transition. Moreover, AP2 represses SOC1 transcription, and we find that reciprocal repression of SOC1 and AP2 contributes to synchronizing precise changes in meristem shape with floral transition.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flowers , Gene Expression Regulation, Plant , Homeodomain Proteins , MADS Domain Proteins , Meristem , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Meristem/metabolism , Meristem/growth & development , Meristem/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , MADS Domain Proteins/metabolism , MADS Domain Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Developmental , Plants, Genetically Modified
3.
Development ; 150(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37971083

ABSTRACT

Plant organ primordia develop successively at the shoot apical meristem (SAM). In Arabidopsis, primordia formed early in development differentiate into vegetative leaves, whereas those formed later generate inflorescence branches and flowers. TERMINAL FLOWER 1 (TFL1), a negative regulator of transcription, acts in the SAM to delay flowering and to maintain inflorescence meristem indeterminacy. We used confocal microscopy, time-resolved transcript profiling and reverse genetics to elucidate this dual role of TFL1. We found that TFL1 accumulates dynamically in the SAM reflecting its dual function. Moreover, TFL1 represses two major sets of genes. One set includes genes that promote flowering, expression of which increases earlier in tfl1 mutants. The other set is spatially misexpressed in tfl1 inflorescence meristems. The misexpression of these two gene sets in tfl1 mutants depends upon FD transcription factor, with which TFL1 interacts. Furthermore, the MADS-box gene SEPALLATA 4, which is upregulated in tfl1, contributes both to the floral transition and shoot determinacy defects of tfl1 mutants. Thus, we delineate the dual function of TFL1 in shoot development in terms of its dynamic spatial distribution and different modes of gene repression.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Developmental , Flowers , Meristem/metabolism
4.
Methods Mol Biol ; 2686: 537-551, 2023.
Article in English | MEDLINE | ID: mdl-37540376

ABSTRACT

The shoot apical meristem is the plant tissue that produces the plant aerial organs such as flowers and leaves. To better understand how the shoot apical meristem develops and adapts to the environment, imaging developing shoot meristems expressing fluorescence reporters through laser confocal microscopy is becoming increasingly important. Yet, there are not many computational pipelines enabling a systematic and high-throughput characterization of the produced microscopy images. This chapter provides a simple method to analyze 3D images obtained through laser scanning microscopy and quantitatively characterize radially or axially symmetric 3D fluorescence domains expressed in a tissue or organ by a reporter. Then, it presents different computational pipelines aiming at performing high-throughput quantitative image analysis of gene expression in plant inflorescence and floral meristems. This methodology has notably enabled the quantitative characterization of how stem cells respond to environmental perturbations in the Arabidopsis thaliana inflorescence meristem and will open new avenues in the use of quantitative analysis of gene expression in shoot apical meristems. Overall, the presented methodology provides a simple framework to analyze quantitatively gene expression domains from 3D confocal images at the tissue and organ level, which can be applied to shoot meristems and other organs and tissues.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Meristem/genetics , Meristem/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Plants/genetics , Gene Expression , Gene Expression Regulation, Plant
5.
Elife ; 102021 06 01.
Article in English | MEDLINE | ID: mdl-34059197

ABSTRACT

Genetically identical plants growing in the same conditions can display heterogeneous phenotypes. Here we use Arabidopsis seed germination time as a model system to examine phenotypic variability and its underlying mechanisms. We show extensive variation in seed germination time variability between Arabidopsis accessions and use a multiparent recombinant inbred population to identify two genetic loci involved in this trait. Both loci include genes implicated in modulating abscisic acid (ABA) sensitivity. Mutually antagonistic regulation between ABA, which represses germination, and gibberellic acid (GA), which promotes germination, underlies the decision to germinate and can act as a bistable switch. A simple stochastic model of the ABA-GA network shows that modulating ABA sensitivity can generate the range of germination time distributions we observe experimentally. We validate the model by testing its predictions on the effects of exogenous hormone addition. Our work provides a foundation for understanding the mechanism and functional role of phenotypic variability in germination time.


Subject(s)
Abscisic Acid/pharmacology , Arabidopsis/drug effects , Germination/drug effects , Gibberellins/pharmacology , Seeds/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Gene Expression Regulation, Plant , Genetic Loci , Models, Biological , Phenotype , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Seeds/genetics , Seeds/growth & development , Signal Transduction , Stochastic Processes , Time Factors
6.
Proc Natl Acad Sci U S A ; 115(6): 1382-1387, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29363596

ABSTRACT

The shoot apical meristem (SAM) is responsible for the generation of all the aerial parts of plants. Given its critical role, dynamical changes in SAM activity should play a central role in the adaptation of plant architecture to the environment. Using quantitative microscopy, grafting experiments, and genetic perturbations, we connect the plant environment to the SAM by describing the molecular mechanism by which cytokinins signal the level of nutrient availability to the SAM. We show that a systemic signal of cytokinin precursors mediates the adaptation of SAM size and organogenesis rate to the availability of mineral nutrients by modulating the expression of WUSCHEL, a key regulator of stem cell homeostasis. In time-lapse experiments, we further show that this mechanism allows meristems to adapt to rapid changes in nitrate concentration, and thereby modulate their rate of organ production to the availability of mineral nutrients within a few days. Our work sheds light on the role of the stem cell regulatory network by showing that it not only maintains meristem homeostasis but also allows plants to adapt to rapid changes in the environment.


Subject(s)
Arabidopsis/cytology , Cytokinins/metabolism , Meristem/cytology , Nitrates/metabolism , Plant Shoots/cytology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/physiology , Gene Expression Regulation, Plant , Homeodomain Proteins/metabolism , Meristem/metabolism , Meristem/physiology , Plant Cells/metabolism , Plant Shoots/metabolism , Plant Stems/cytology , Plant Stems/metabolism , Plants, Genetically Modified , Signal Transduction , Soil/chemistry
7.
Development ; 145(1)2018 01 10.
Article in English | MEDLINE | ID: mdl-29242285

ABSTRACT

During metazoan development, Notch signaling drives spatially coordinated differentiation by establishing communication between adjacent cells. This occurs through either lateral inhibition, in which adjacent cells acquire distinct fates, or lateral induction, in which all cells become equivalent. Notch signaling is commonly activated by several distinct ligands, each of which drives signaling with a different efficiency upon binding to the Notch receptor of adjacent cells. Moreover, these ligands can also be distinctly regulated by Notch signaling. Under such complex circumstances, the overall spatial coordination becomes elusive. Here, we address this issue through both mathematical and computational analyses. Our results show that when two ligands have distinct efficiencies and compete for the same Notch receptor, they cooperate to drive new signaling states, thereby conferring additional robustness and evolvability to Notch signaling. Counterintuitively, whereas antagonistically regulated ligands cooperate to drive and enhance the response that is expected from the more efficient ligand, equivalently regulated ligands coordinate emergent spatial responses that are dependent on both ligands. Our study highlights the importance of ligand efficiency in multi-ligand scenarios, and can explain previously reported complex phenotypes.


Subject(s)
Models, Biological , Receptors, Notch/metabolism , Signal Transduction/physiology , Animals , Humans
8.
Elife ; 62017 02 01.
Article in English | MEDLINE | ID: mdl-28145865

ABSTRACT

Multicellular development produces patterns of specialized cell types. Yet, it is often unclear how individual cells within a field of identical cells initiate the patterning process. Using live imaging, quantitative image analyses and modeling, we show that during Arabidopsis thaliana sepal development, fluctuations in the concentration of the transcription factor ATML1 pattern a field of identical epidermal cells to differentiate into giant cells interspersed between smaller cells. We find that ATML1 is expressed in all epidermal cells. However, its level fluctuates in each of these cells. If ATML1 levels surpass a threshold during the G2 phase of the cell cycle, the cell will likely enter a state of endoreduplication and become giant. Otherwise, the cell divides. Our results demonstrate a fluctuation-driven patterning mechanism for how cell fate decisions can be initiated through a random yet tightly regulated process.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Flowers/growth & development , Giant Cells/physiology , Homeodomain Proteins/metabolism , Plant Cells/physiology , Plant Epidermis/cytology , Transcription, Genetic
9.
Methods Mol Biol ; 1544: 3-19, 2017.
Article in English | MEDLINE | ID: mdl-28050824

ABSTRACT

The plant vascular system provides transport and mechanical support functions that are essential for suitable plant growth and development. In Arabidopsis thaliana (Arabidopsis), the vascular tissues at the shoot inflorescence stems are disposed in organized vascular bundles. The vascular patterning emergence and development within the shoot inflorescence stems is under the control of plant growth regulators (De Rybel et al., Nat Rev Mol Cell Biol 17:30-40, 2016; Caño-Delgado et al., Annu Rev Cell Dev Biol 26:605-637, 2010). By using a combined approach of experimental methods for vascular tissues visualization and quantification together with theoretical methods through mathematical and computational modeling, we have reported that auxin transport and brassinosteroid signaling play complementary roles in the formation of the periodic vascular patterning in the shoot (Ibañes et al., Proc Natl Acad Sci U S A 106:13630-13635, 2009; Fàbregas et al., Plant Signal Behav 5:903-906, 2010; Fàbregas et al., PLoS Genet 11:e1005183, 2015). Here, we report the methodology for the interdisciplinary analysis of the shoot vascular patterning in the plant model Arabidopsis into a handle procedure for visualization, quantification, data analysis, and modeling implementation.


Subject(s)
Models, Biological , Plant Shoots/cytology , Plant Shoots/growth & development , Plant Vascular Bundle/cytology , Plant Vascular Bundle/growth & development , Algorithms , Immunohistochemistry , Plant Development
10.
PLoS Genet ; 11(4): e1005183, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25922946

ABSTRACT

Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.


Subject(s)
Arabidopsis Proteins/genetics , Membrane Transport Proteins/genetics , Xylem/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Cell Differentiation/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids , Membrane Transport Proteins/metabolism , Plant Development/genetics , Plant Shoots/genetics , Plant Shoots/growth & development , Xylem/growth & development
11.
Biophys J ; 108(6): 1555-1565, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25809268

ABSTRACT

The development of multicellular organisms involves cells to decide their fate upon the action of biochemical signals. This decision is often spatiotemporally coordinated such that a spatial pattern arises. The dynamics that drive pattern formation usually involve genetic nonlinear interactions and positive feedback loops. These complex dynamics may enable multiple stable patterns for the same conditions. Under these circumstances, pattern formation in a developing tissue involves a selection process: why is a certain pattern formed and not another stable one? Herein we computationally address this issue in the context of the Notch signaling pathway. We characterize a dynamical mechanism for developmental selection of a specific pattern through spatiotemporal changes of the control parameters of the dynamics, in contrast to commonly studied situations in which initial conditions and noise determine which pattern is selected among multiple stable ones. This mechanism can be understood as a path along the parameter space driven by a sequence of biochemical signals. We characterize the selection process for three different scenarios of this dynamical mechanism that can take place during development: the signal either 1) acts in all the cells at the same time, 2) acts only within a cluster of cells, or 3) propagates along the tissue. We found that key elements for pattern selection are the destabilization of the initial pattern, the subsequent exploration of other patterns determined by the spatiotemporal symmetry of the parameter changes, and the speeds of the path compared to the timescales of the pattern formation process itself. Each scenario enables the selection of different types of patterns and creates these elements in distinct ways, resulting in different features. Our approach extends the concept of selection involved in cellular decision-making, usually applied to cell-autonomous decisions, to systems that collectively make decisions through cell-to-cell interactions.


Subject(s)
Receptors, Notch/metabolism , Signal Transduction , Computer Simulation , Models, Molecular
12.
Methods Mol Biol ; 1187: 285-310, 2014.
Article in English | MEDLINE | ID: mdl-25053498

ABSTRACT

Theoretical and computational approaches for understanding different aspects of Notch signaling and Notch dependent patterning are gaining popularity in recent years. These in silico methodologies can provide dynamic insights that are often not intuitive and may help guide experiments aimed at elucidating these processes. This chapter is an introductory tutorial intended to allow someone with basic mathematical and computational knowledge to explore new mathematical models of Notch-mediated processes and perform numerical simulations of these models. In particular, we explain how to define and simulate models of lateral inhibition patterning processes. We provide a Matlab code for simulating various lateral inhibition models in a simple and intuitive manner, and show how to present the results from the computational models. This code can be used as a starting point for exploring more specific models that include additional aspects of the Notch pathway and its regulation.


Subject(s)
Computer Simulation , Models, Biological , Receptors, Notch/metabolism , Signal Transduction , Animals , Humans
13.
PLoS One ; 9(4): e95744, 2014.
Article in English | MEDLINE | ID: mdl-24781918

ABSTRACT

Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions) can also trigger a cell-autonomous Notch signal (cis-signaling), whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability. Our study exemplifies the complexity of regulations when multiple signaling sources share the same receptor and provides the tools for their characterization.


Subject(s)
Cell Lineage , Receptors, Notch/metabolism , Signal Transduction , Models, Biological
14.
Development ; 141(11): 2313-24, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24821984

ABSTRACT

During inner ear development, Notch exhibits two modes of operation: lateral induction, which is associated with prosensory specification, and lateral inhibition, which is involved in hair cell determination. These mechanisms depend respectively on two different ligands, jagged 1 (Jag1) and delta 1 (Dl1), that rely on a common signaling cascade initiated after Notch activation. In the chicken otocyst, expression of Jag1 and the Notch target Hey1 correlates well with lateral induction, whereas both Jag1 and Dl1 are expressed during lateral inhibition, as are Notch targets Hey1 and Hes5. Here, we show that Jag1 drives lower levels of Notch activity than Dl1, which results in the differential expression of Hey1 and Hes5. In addition, Jag1 interferes with the ability of Dl1 to elicit high levels of Notch activity. Modeling the sensory epithelium when the two ligands are expressed together shows that ligand regulation, differential signaling strength and ligand competition are crucial to allow the two modes of operation and for establishing the alternate pattern of hair cells and supporting cells. Jag1, while driving lateral induction on its own, facilitates patterning by lateral inhibition in the presence of Dl1. This novel behavior emerges from Jag1 acting as a competitive inhibitor of Dl1 for Notch signaling. Both modeling and experiments show that hair cell patterning is very robust. The model suggests that autoactivation of proneural factor Atoh1, upstream of Dl1, is a fundamental component for robustness. The results stress the importance of the levels of Notch signaling and ligand competition for Notch function.


Subject(s)
Cell Lineage , Ear, Inner/embryology , Gene Expression Regulation, Developmental , Receptors, Notch/metabolism , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Calcium-Binding Proteins/metabolism , Cell Differentiation , Chick Embryo , Hair Cells, Auditory, Inner/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Ligands , Membrane Proteins/metabolism , Models, Theoretical , Repressor Proteins/metabolism , Serrate-Jagged Proteins
15.
Int J Dev Biol ; 57(5): 341-50, 2013.
Article in English | MEDLINE | ID: mdl-23873365

ABSTRACT

Neuronal production in metazoans is tightly controlled by Delta/Notch-dependent signals regulating lateral inhibition. It is currently thought that lateral inhibition takes place in clusters of precursors with equal capacity to trigger and receive Notch-dependent inhibitory signals. However, this view neglects crucial dynamical aspects of the process. In this review, we discuss two of these dynamic factors, whose alterations yield dysfunctions in neurogenesis. First, precursors show variable neurogenic capacity as they go through the cell cycle. Second, differentiating precursors are in direct contact with non-neurogenic cells at the wavefront of expanding neurogenic domains. We discuss the mechanisms adopted by Metazoa to prevent these dysfunctions in the lateral inhibitory process, which include cell cycle synchronization occurring in the invertebrate neural epithelium and during primary neurogenesis in anamniotes, interkinetic nuclear movement in the vertebrate neuroepithelium and generalized Delta expression ahead of the neurogenic wavefront. The emerging concept is that lateral inhibition during neurogenesis occurs in dynamic clusters of precursors and requires specific mechanisms to avoid distortions resulting from the interaction between neurogenic and non-neurogenic precursors. The advance in visualizing Notch dynamics with real-time imaging at cellular and subcellular levels will notably contribute to our understanding of these novel "aspects of motion" in neurogenesis.


Subject(s)
Cell Communication/physiology , Cell Cycle/physiology , Cell Differentiation/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Animals , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/physiology , Membrane Proteins/metabolism , Membrane Proteins/physiology , Models, Neurological , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Receptors, Notch/metabolism , Receptors, Notch/physiology , Signal Transduction/physiology
16.
Development ; 139(13): 2321-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22669822

ABSTRACT

Signaling mediated by the Delta/Notch system controls the process of lateral inhibition, known to regulate neurogenesis in metazoans. Lateral inhibition takes place in equivalence groups formed by cells having equal capacity to differentiate, and it results in the singling out of precursors, which subsequently become neurons. During normal development, areas of active neurogenesis spread through non-neurogenic regions in response to specific morphogens, giving rise to neurogenic wavefronts. Close contact of these wavefronts with non-neurogenic cells is expected to affect lateral inhibition. Therefore, a mechanism should exist in these regions to prevent disturbances of the lateral inhibitory process. Focusing on the developing chick retina, we show that Dll1 is widely expressed by non-neurogenic precursors located at the periphery of this tissue, a region lacking Notch1, lFng, and differentiation-related gene expression. We investigated the role of this Dll1 expression through mathematical modeling. Our analysis predicts that the absence of Dll1 ahead of the neurogenic wavefront results in reduced robustness of the lateral inhibition process, often linked to enhanced neurogenesis and the presence of morphological alterations of the wavefront itself. These predictions are consistent with previous observations in the retina of mice in which Dll1 is conditionally mutated. The predictive capacity of our mathematical model was confirmed further by mimicking published results on the perturbation of morphogenetic furrow progression in the eye imaginal disc of Drosophila. Altogether, we propose that Notch-independent Delta expression ahead of the neurogenic wavefront is required to avoid perturbations in lateral inhibition and wavefront progression, thus optimizing the neurogenic process.


Subject(s)
Neurogenesis , Neurons/cytology , Retina/growth & development , Animals , Chick Embryo , Computer Simulation , Drosophila/growth & development , Embryonic Development , Intracellular Signaling Peptides and Proteins/analysis , Membrane Proteins/analysis , Mice , Models, Biological , Retina/cytology
SELECTION OF CITATIONS
SEARCH DETAIL