Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2822, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561329

ABSTRACT

The systematic status of the small-bodied catarrhine primate Pliobates cataloniae, from the Miocene (11.6 Ma) of Spain, is controversial because it displays a mosaic of primitive and derived features compared with extant hominoids (apes and humans). Cladistic analyses have recovered Pliobates as either a stem hominoid or as a pliopithecoid stem catarrhine (i.e., preceding the cercopithecoid-hominoid divergence). Here, we describe additional dental remains of P. cataloniae from another locality that display unambiguous synapomorphies of crouzeliid pliopithecoids. Our cladistic analyses support a close phylogenetic link with poorly-known small crouzeliids from Europe based on (cranio)dental characters but recover pliopithecoids as stem hominoids when postcranial characters are included. We conclude that Pliobates is a derived stem catarrhine that shows postcranial convergences with modern apes in the elbow and wrist joints-thus clarifying pliopithecoid evolution and illustrating the plausibility of independent acquisition of postcranial similarities between hylobatids and hominids.


Subject(s)
Fossils , Hominidae , Animals , Humans , Phylogeny , Primates , Cercopithecidae , Biological Evolution
3.
Proc Natl Acad Sci U S A ; 120(44): e2218778120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37844214

ABSTRACT

Pierolapithecus catalaunicus (~12 million years ago, northeastern Spain) is key to understanding the mosaic nature of hominid (great ape and human) evolution. Notably, its skeleton indicates that an orthograde (upright) body plan preceded suspensory adaptations in hominid evolution. However, there is ongoing debate about this species, partly because the sole known cranium, preserving a nearly complete face, suffers from taphonomic damage. We 1) carried out a micro computerized tomography (CT) based virtual reconstruction of the Pierolapithecus cranium, 2) assessed its morphological affinities using a series of two-dimensional (2D) and three-dimensional (3D) morphometric analyses, and 3) modeled the evolution of key aspects of ape face form. The reconstruction clarifies many aspects of the facial morphology of Pierolapithecus. Our results indicate that it is most similar to great apes (fossil and extant) in overall face shape and size and is morphologically distinct from other Middle Miocene apes. Crown great apes can be distinguished from other taxa in several facial metrics (e.g., low midfacial prognathism, relatively tall faces) and only some of these features are found in Pierolapithecus, which is most consistent with a stem (basal) hominid position. The inferred morphology at all ancestral nodes within the hominoid (ape and human) tree is closer to great apes than to hylobatids (gibbons and siamangs), which are convergent with other smaller anthropoids. Our analyses support a hominid ancestor that was distinct from all extant and fossil hominids in overall facial shape and shared many features with Pierolapithecus. This reconstructed ancestral morphotype represents a testable hypothesis that can be reevaluated as new fossils are discovered.


Subject(s)
Hominidae , Hylobatidae , Animals , Humans , Biological Evolution , Hominidae/anatomy & histology , Skull/anatomy & histology , Fossils , Haplorhini , Hylobates , Phylogeny
4.
J Hum Evol ; 177: 103326, 2023 04.
Article in English | MEDLINE | ID: mdl-36863301

ABSTRACT

A vast diversity of catarrhines primates has been uncovered in the Middle to Late Miocene (12.5-9.6 Ma) of the Vallès-Penedès Basin (northeastern Spain), including several hominid species (Pierolapithecus catalaunicus, Anoiapithecus brevirostris, Dryopithecus fontani, Hispanopithecus laietanus, and Hispanopithecus crusafonti) plus some remains attributed to 'Sivapithecus' occidentalis (of uncertain taxonomic validity). However, Pierolapithecus and Anoiapithecus have also been considered junior synonyms of Dryopithecus by some authors, which entail a lower generic diversity and an inflated intrageneric variation of the latter genus. Since the distinction of these taxa partly relies on dental features, the detailed and quantitative analysis of tooth shape might help disentangling the taxonomic diversity of these Miocene hominids. Using diffeomorphic surface matching and three-dimensional geometric morphometrics, we investigate the enamel-dentine junction shape (which is a reliable taxonomic proxy) of these Miocene hominids, with the aim of investigating their degree of intra- and intergeneric variation compared with that of extant great ape genera. We conducted statistical analyses, including between-group principal component analyses, canonical variate analyses, and permutation tests, to investigate whether the individual and combined (i.e., Dryopithecus s.l.) variation of the extinct genera exceeds that of the extant great apes. Our results indicate that Pierolapithecus, Anoiapithecus, Dryopithecus, and Hispanopithecus show morphological differences of enamel-dentine junction shape relative to the extant great apes that are consistent with their attribution to different genera. Specifically, the variation displayed by the Middle Miocene taxa combined exceeds that of extant great ape genera, thus undermining the single-genus hypothesis. 'Sivapithecus' occidentalis specimens fall close to Dryopithecus but in the absence of well-preserved comparable teeth for Pierolapithecus and Anoiapithecus, their taxonomic attribution remains uncertain. Among the Hispanopithecus sample, IPS1802 from Can Llobateres stands out and might either be an outlier in terms of morphology, or represent another dryopithecine taxon.


Subject(s)
Hominidae , Tooth , Animals , Fossils , Tooth/anatomy & histology , Hominidae/anatomy & histology , Cercopithecidae , Dentin , Dental Enamel
5.
Sci Rep ; 11(1): 22862, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819557

ABSTRACT

The 1-m-tall dwarf elephant Palaeoloxodon falconeri from the Pleistocene of Sicily (Italy) is an extreme example of insular dwarfism and epitomizes the Island Rule. Based on scaling of life-history (LH) traits with body mass, P. falconeri is widely considered to be 'r-selected' by truncation of the growth period, associated with an early onset of reproduction and an abbreviated lifespan. These conjectures are, however, at odds with predictions from LH models for adaptive shifts in body size on islands. To settle the LH strategy of P. falconeri, we used bone, molar, and tusk histology to infer growth rates, age at first reproduction, and longevity. Our results from all approaches are congruent and provide evidence that the insular dwarf elephant grew at very slow rates over an extended period; attained maturity at the age of 15 years; and had a minimum lifespan of 68 years. This surpasses not only the values predicted from body mass but even those of both its giant sister taxon (P. antiquus) and its large mainland cousin (L. africana). The suite of LH traits of P. falconeri is consistent with the LH data hitherto inferred for other dwarfed insular mammals. P. falconeri, thus, not only epitomizes the Island Rule but it can also be viewed as a paradigm of evolutionary change towards a slow LH that accompanies the process of dwarfing in insular mammals.


Subject(s)
Biological Evolution , Dwarfism/veterinary , Elephants/growth & development , Fossils , Life History Traits , Age Factors , Animals , Body Weight , Dwarfism/genetics , Dwarfism/physiopathology , Elephants/genetics , Longevity , Reproduction
7.
Sci Rep ; 9(1): 16629, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719546

ABSTRACT

The Canary Islands are an Atlantic archipelago known for its high number of endemic species. Among the most known endemic vertebrate species are the giant lizards of the genus Gallotia. We describe the cranial osteology of the first almost complete and articulated fossil skull of the taxon Gallotia auaritae, recovered from the lower-middle Pleistocene of the La Palma island. In this work, X-ray computed microtomography images were used to perform an exhaustive phylogenetic analysis where most of the extant and fossil species of the genus Gallotia were included for first time. This analysis recovered a monophyletic Gallotia clade with similar topology to that of molecular analyses. The newly described specimen shares some characters with the group formed by G. bravoana, G. intermedia and G. simonyi, G. auaritae, and its position is compatible with a referral to the latter. Our study adds new important data to the poorly known cranial morphology of G. auaritae, and the phylogenetic analysis reveals an unexpected power of resolution to obtain a morphology-based phylogeny for the genus Gallotia, for inferring the phylogenetic position of extinct species and for helping in the identification of fossil specimens.


Subject(s)
Lizards/anatomy & histology , Skull/anatomy & histology , Animals , Fossils/anatomy & histology , Lizards/genetics , Mandible/anatomy & histology , Maxilla/anatomy & histology , Paleontology , Phylogeny , Spain
8.
J Morphol ; 280(12): 1850-1864, 2019 12.
Article in English | MEDLINE | ID: mdl-31638728

ABSTRACT

Cranial sutures connect adjacent bones of the skull and play an important role in the absorption of stresses that may occur during different activities. The Late Triassic temnospondyl amphibian Metoposaurus krasiejowensis has been extensively studied over the years in terms of skull biomechanics, but without a detailed description of the function of cranial sutures. In the present study, 34 thin sections of cranial sutures were examined in order to determine their histovariability and interpret their biomechanical role in the skull. The histological model was compared with three-dimensional-finite element analysis (FEA) simulations of the skull under bilateral and lateral biting as well as skull-raising loads for maximum and minimum principal stress. Histologically, only two sutural morphologies were recognised in the skull of Metoposaurus: interdigitated sutures (commonly associated with compressive stresses) are dominant along the entire length of the skull roof and palate; tongue-and-groove sutures (commonly associated with tensile stresses) are present across the maxilla. FEA shows a much more complex picture of stress type and distribution than predicted by sutures. Common to both methods is a predominance of compressive stresses which act on the skull during biting. The methods predict different stress regimes during biting in the posterior part of the skull: where histological analysis suggests compression, FEA predicts tension. For lateral biting and skull raising, histological and digital reconstructions show similar general patterns but with some variations.


Subject(s)
Amphibians/anatomy & histology , Cranial Sutures/anatomy & histology , Fossils/anatomy & histology , Amphibians/physiology , Animals , Biomechanical Phenomena , Cranial Sutures/physiology , Finite Element Analysis , Poland , Skull/anatomy & histology , Skull/physiology
9.
PLoS One ; 14(4): e0214510, 2019.
Article in English | MEDLINE | ID: mdl-30995252

ABSTRACT

There is considerable debate regarding whether mandibular morphology in ungulates primarily reflects phylogenetic affinities or adaptation to specific diet. In an effort to help resolve this debate, we use three-dimensional finite element analysis (FEA) to assess the biomechanical performance of mandibles in eleven ungulate taxa with well-established but distinct dietary preferences. We found notable differences in the magnitude and the distribution of von Mises stress between Artiodactyla and Perissodactyla, with the latter displaying lower overall stress values. Additionally, within the order Artiodactyla the suborders Ruminantia and Tylopoda showed further distinctive stress patterns. Our data suggest that a strong phylogenetic signal can be detected in biomechanical performance of the ungulate mandible. In general, Perissodactyla have stiffer mandibles than Artiodactyla. This difference is more evident between Perissodactyla and ruminant species. Perissodactyla likely rely more heavily on thoroughly chewing their food upon initial ingestion, which demands higher bite forces and greater stress resistance, while ruminants shift comminution to a later state (rumination) where less mechanical effort is required by the jaw to obtain sufficient disintegration. We therefore suggest that ruminants can afford to chew sloppily regardless of ingesta, while hindgut fermenters cannot. Additionally, our data support a secondary degree of adaptation towards specific diet. We find that mandibular morphologies reflect the masticatory demands of specific ingesta within the orders Artiodactyla and Perissodactyla. Of particular note, stress patterns in the white rhinoceros (C. simum) look more like those of a general grazer than like other rhinoceros' taxa. Similarly, the camelids (Tylopoda) appear to occupy an intermediate position in the stress patterns, which reflects the more ancestral ruminating system of the Tylopoda.


Subject(s)
Bite Force , Mandible/physiology , Mastication/physiology , Ruminants/physiology , Animals , Artiodactyla/anatomy & histology , Biomechanical Phenomena , Cluster Analysis , Diet , Evolution, Molecular , Female , Finite Element Analysis , Imaging, Three-Dimensional , Male , Models, Anatomic , Perissodactyla/anatomy & histology , Phylogeny , Reproducibility of Results , Species Specificity
10.
Sci Rep ; 9(1): 4940, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894614

ABSTRACT

The pterosaur record from the Iberian Peninsula is mostly scarce and undefined, but in the last few years some new taxa have been described from different Lower Cretaceous sites of Spain. Here we describe a new genus and species of toothed pterodactyloid pterosaur from the Barremian of the Iberian Peninsula, Iberodactylus andreui gen. et sp. nov., that shows a close and rather unexpected relationship with Hamipterus tianshanensis from China. A review of the phylogenetic relationships of the Anhangueria reveals a new family of pterodactyloid pterosaurs, the Hamipteridae fam. nov. being recovered as sister-group of the Anhangueridae. This latter clade can be in turn divided into the new clades Anhanguerinae and Coloborhynchinae. The close relationships of Iberodactylus and Hamipterus shows an interesting palaeobiogeographical correlation between the Chinese and Iberian pterosaur faunas during the Barremian (Lower Cretaceous). The discovery of Iberodactylus strongly suggests that the clade Anhangueria has clear ancestral ties in eastern Laurasia.


Subject(s)
Dinosaurs/genetics , Genetic Speciation , Phylogeny , Animals , China , Fossils , Phylogeography , Spain
11.
Elife ; 72018 10 09.
Article in English | MEDLINE | ID: mdl-30296996

ABSTRACT

Flying squirrels are the only group of gliding mammals with a remarkable diversity and wide geographical range. However, their evolutionary story is not well known. Thus far, identification of extinct flying squirrels has been exclusively based on dental features, which, contrary to certain postcranial characters, are not unique to them. Therefore, fossils attributed to this clade may indeed belong to other squirrel groups. Here we report the oldest fossil skeleton of a flying squirrel (11.6 Ma) that displays the gliding-related diagnostic features shared by extant forms and allows for a recalibration of the divergence time between tree and flying squirrels. Our phylogenetic analyses combining morphological and molecular data generally support older dates than previous molecular estimates (~23 Ma), being congruent with the inclusion of some of the earliest fossils (~36 Ma) into this clade. They also show that flying squirrels experienced little morphological change for almost 12 million years.


Subject(s)
Bone and Bones/anatomy & histology , Fossils , Sciuridae/anatomy & histology , Skeleton/anatomy & histology , Animals , Cytochromes b/genetics , Genetic Variation , Geography , Phylogeny , RNA, Ribosomal/genetics , Sciuridae/classification , Sciuridae/genetics , Spain , Time Factors
12.
PeerJ ; 6: e4426, 2018.
Article in English | MEDLINE | ID: mdl-29503770

ABSTRACT

Finite Element Analysis (FEA) is a useful method for understanding form and function. However, modelling of fossil taxa invariably involves assumptions as a result of preservation-induced loss of information in the fossil record. To test the validity of predictions from FEA, given such assumptions, these results could be compared to independent lines of evidence for cranial mechanics. In the present study a new concept of using bone microstructure to predict stress distribution in the skull during feeding is put forward and a correlation between bone microstructure and results of computational biomechanics (FEA) is carried out. The bony framework is a product of biological optimisation; bone structure is created to meet local mechanical conditions. To test how well results from FEA correlate to cranial mechanics predicted from bone structure, the well-known temnospondyl Metoposaurus krasiejowensis was used as a model. A crucial issue to Temnospondyli is their feeding mode: did they suction feed or employ direct biting, or both? Metoposaurids have previously been characterised either as active hunters or passive bottom dwellers. In order to test the correlation between results from FEA and bone microstructure, two skulls of Metoposaurus were used, one modelled under FE analyses, while for the second one 17 dermal bone microstructure were analysed. Thus, for the first time, results predicting cranial mechanical behaviour using both methods are merged to understand the feeding strategy of Metoposaurus. Metoposaurus appears to have been an aquatic animal that exhibited a generalist feeding behaviour. This taxon may have used two foraging techniques in hunting; mainly bilateral biting and, to a lesser extent, lateral strikes. However, bone microstructure suggests that lateral biting was more frequent than suggested by Finite Element Analysis (FEA). One of the potential factors that determined its mode of life may have been water levels. During optimum water conditions, metoposaurids may have been more active ambush predators that were capable of lateral strikes of the head. The dry season required a less active mode of life when bilateral biting is particularly efficient. This, combined with their characteristically anteriorly positioned orbits, was optimal for ambush strategy. This ability to use alternative modes of food acquisition, independent of environmental conditions, might hold the key in explaining the very common occurrence of metoposaurids during the Late Triassic.

13.
Am J Phys Anthropol ; 166(4): 987-993, 2018 08.
Article in English | MEDLINE | ID: mdl-29577230

ABSTRACT

OBJECTIVES: High-resolution imaging of fossils with X-ray computed microtomography (µCT) has become a very powerful tool in paleontological research. However, fossilized bone, embedding matrix, and dental tissues do not always provide a distinct structural signal with X-rays. We demonstrate the benefits of high-resolution neutron radiation in three different specimens showing problematic contrasts with X-ray µCT. MATERIALS AND METHODS: We compare neutron with X-ray µCT scans of fossils from two Miocene catarrhines from the Vallès-Penedès Basin: the cranium (IPS58443.1, holotype) of the putative stem hominoid Pliobates cataloniae, to discriminate between bone and matrix; and two lower molars (IPS1724n,o, holotype) of Barberapithecus huerzeleri, to discriminate among dental tissues. RESULTS: X-ray µCT scans of these specimens fail to retrieve any contrast between matrix/bone and enamel/dentine, whereas neutron µCT scans deliver high-contrast images, enabling a proper evaluation of the specimens' internal anatomy. DISCUSSION: Low bone/matrix intensity difference with X-ray µCT scans in IPS58443.1 is due to the extreme similarity in chemical composition between the matrix and the fossilized tissues, and the presence of high-density elements. In IPS1724, it is attributable to the convergence of enamel and dentine compositions during fossilization. On the contrary, neutron radiation returns very different contrasts for different isotopes of the same element and easily penetrates most metals. Neutron-based µCT scans therefore enable a correct definition of the bone/sediment and enamel/dentine interfaces, and hence a better segmentation of the images stack. We conclude that neutron radiation represents a successful alternative for high-resolution µCT of small-sized fossils that are problematic with X-rays.


Subject(s)
Catarrhini/anatomy & histology , Fossils , Neutrons , X-Ray Microtomography/methods , Animals , Anthropology, Physical , Bone and Bones/diagnostic imaging , Molar/diagnostic imaging , Spain
14.
PeerJ ; 5: e3793, 2017.
Article in English | MEDLINE | ID: mdl-29043107

ABSTRACT

BACKGROUND: In this paper, we propose a new method, named the intervals' method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. METHODS: The intervals' method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. RESULTS: Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals' method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. DISCUSSION: We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches.

15.
Sci Rep ; 7(1): 10174, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860600

ABSTRACT

Developmental changes in salamander skulls, before and after metamorphosis, affect the feeding capabilities of these animals. How changes in cranial morphology and tissue properties affect the function of the skull are key to decipher the early evolutionary history of the crown-group of salamanders. Here, 3D cranial biomechanics of the adult Salamandrella keyserlingii were analyzed under different tissue properties and ossification sequences of the cranial skeleton. This helped unravel that: (a) Mechanical properties of tissues (as bone, cartilage or connective tissue) imply a consensus between the stiffness required to perform a function versus the fixation (and displacement) required with the surrounding skeletal elements. (b) Changes on the ossification pattern, producing fontanelles as a result of bone loss or failure to ossify, represent a trend toward simplification potentially helping to distribute stress through the skull, but may also imply a major destabilization of the skull. (c) Bone loss may be originated due to biomechanical optimization and potential reduction of developmental costs. (d) Hynobiids are excellent models for biomechanical reconstruction of extinct early urodeles.


Subject(s)
Skull/anatomy & histology , Urodela/physiology , Animals , Biological Evolution , Biomechanical Phenomena , Metamorphosis, Biological , Models, Anatomic , Phylogeny , Skull/physiology , Urodela/anatomy & histology
16.
J Anat ; 230(6): 752-765, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28369819

ABSTRACT

The Late Triassic freshwater ecosystems were occupied by different tetrapod groups including large-sized anamniotes, such as metoposaurids. Most members of this group of temnospondyls acquired gigantic sizes (up to 5 m long) with a nearly worldwide distribution. The paleoecology of metoposaurids is controversial; they have been historically considered passive, bottom-dwelling animals, waiting for prey on the bottom of rivers and lakes, or they have been suggested to be active mid-water feeders. The present study aims to expand upon the paleoecological interpretations of these animals using 3D finite element analyses (FEA). Skulls from two taxa, Metoposaurus krasiejowensis, a gigantic taxon from Europe, and Apachesaurus gregorii, a non-gigantic taxon from North America, were analyzed under different biomechanical scenarios. Both 3D models of the skulls were scaled to allow comparisons between them and reveal that the general stress distribution pattern found in both taxa is clearly similar in all scenarios. In light of our results, both previous hypotheses about the paleoecology of these animals can be partly merged: metoposaurids probably were ambush and active predators, but not the top predators of these aquatic environments. The FEA results demonstrate that they were particularly efficient at bilateral biting, and together with their characteristically anteropositioned orbits, optimal for an ambush strategy. Nonetheless, the results also show that these animals were capable of lateral strikes of the head, suggesting active hunting of prey. Regarding the important skull size differences between the taxa analyzed, our results suggest that the size reduction in the North American taxon could be related to drastic environmental changes or the increase of competitors. The size reduction might have helped them expand into new ecological niches, but they likely remained fully aquatic, as are all other metoposaurids.


Subject(s)
Amphibians/physiology , Bite Force , Feeding Behavior/physiology , Fossils , Skull/physiology , Amphibians/anatomy & histology , Animals , Biological Evolution , Biomechanical Phenomena/physiology , Finite Element Analysis , Skull/anatomy & histology
17.
PLoS One ; 12(4): e0174693, 2017.
Article in English | MEDLINE | ID: mdl-28423005

ABSTRACT

The vertebrate recovery after the end-Permian mass extinction can be approached through the ichnological record, which is much more abundant than body fossils. The late Olenekian (Early Triassic) tetrapod ichnoassemblage of the Catalan Pyrenean Basin is the most complete and diverse of this age from Western Tethys. This extensional basin, composed of several depocenters, was formed in the latest phases of the Variscan orogeny (Pangea breakup) and was infilled by braided and meandering fluvial systems of the red-beds Buntsandstein facies. Abundant and diverse tetrapod ichnites are recorded in these facies, including Prorotodactylus mesaxonichnus isp. nov. (tracks possibly produced by euparkeriids), cf. Rotodactylus, at least two large chirotheriid morphotypes (archosauriform trackmakers), Rhynchosauroides cf. schochardti, two other undetermined Rhynchosauroides forms, an undetermined Morphotype A (archosauromorph trackmakers) and two types of Characichnos isp. (swimming traces, here associated to archosauromorph trackmakers). The Pyrenean ichnoassemblage suggests a relatively homogeneous ichnofaunal composition through the late Early Triassic of Central Pangea, characterized by the presence of Prorotodactylus and Rotodactylus. Small archosauromorph tracks dominate and present a wide distribution through the different fluviatile facies of the Triassic Pyrenean Basin, with large archosaurian footprints being present in a lesser degree. Archosauromorphs radiated and diversified through the Triassic vertebrate recovery, which ultimately lead to the archosaur and dinosaur dominance of the Mesozoic.


Subject(s)
Biological Evolution , Dinosaurs/classification , Extinction, Biological , Phylogeny , Animals , Biodiversity , Dinosaurs/anatomy & histology , Dinosaurs/physiology , Fossils , Paleontology , Spain
18.
Sci Rep ; 6: 30387, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27457883

ABSTRACT

Macroevolutionary, palaeoecological and biomechanical analyses in deep time offer the possibility to decipher the structural constraints, ecomorphological patterns and evolutionary history of extinct groups. Here, 3D comparative biomechanical analyses of the extinct giant early amphibian group of stereospondyls together with living lissamphibians and crocodiles, shows that: i) stereospondyls had peculiar palaeoecological niches with proper bites and stress patterns very different than those of giant salamanders and crocodiles; ii) their extinction may be correlated with the appearance of neosuchians, which display morphofunctional innovations. Stereospondyls weathered the end-Permian mass extinction, re-radiated, acquired gigantic sizes and dominated (semi) aquatic ecosystems during the Triassic. Because these ecosystems are today occupied by crocodilians, and stereospondyls are extinct amphibians, their palaeobiology is a matter of an intensive debate: stereospondyls were a priori compared with putative living analogous such as giant salamanders and/or crocodilians and our new results try to close this debate.


Subject(s)
Amphibians/anatomy & histology , Biological Evolution , Ecosystem , Extinction, Biological , Phylogeny , Alligators and Crocodiles/anatomy & histology , Alligators and Crocodiles/genetics , Amphibians/genetics , Animals , Biomechanical Phenomena , Skull/anatomy & histology , Urodela/anatomy & histology , Urodela/genetics
19.
PLoS One ; 10(11): e0141275, 2015.
Article in English | MEDLINE | ID: mdl-26560101

ABSTRACT

A small accumulation of bones from the Norian (Upper Triassic) of the Seazza Brook Valley (Carnic Prealps, Northern Italy) was originally (1989) identified as a gastric pellet made of pterosaur skeletal elements. The specimen has been reported in literature as one of the very few cases of gastric ejecta containing pterosaur bones since then. However, the detailed analysis of the bones preserved in the pellet, their study by X-ray microCT, and the comparison with those of basal pterosaurs do not support a referral to the Pterosauria. Comparison with the osteology of a large sample of Middle-Late Triassic reptiles shows some affinity with the protorosaurians, mainly with Langobardisaurus pandolfii that was found in the same formation as the pellet. However, differences with this species suggest that the bones belong to a similar but distinct taxon. The interpretation as a gastric pellet is confirmed.


Subject(s)
Bone and Bones/anatomy & histology , Fossils , Reptiles/anatomy & histology , Animals , Dinosaurs/anatomy & histology , Italy , Skeleton/anatomy & histology , Species Specificity , X-Ray Microtomography
20.
Science ; 350(6260): aab2625, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26516285

ABSTRACT

Miocene small-bodied anthropoid primates from Africa and Eurasia are generally considered to precede the divergence between the two groups of extant catarrhines­hominoids (apes and humans) and Old World monkeys­and are thus viewed as more primitive than the stem ape Proconsul. Here we describe Pliobates cataloniae gen. et sp. nov., a small-bodied (4 to 5 kilograms) primate from the Iberian Miocene (11.6 million years ago) that displays a mosaic of primitive characteristics coupled with multiple cranial and postcranial shared derived features of extant hominoids. Our cladistic analyses show that Pliobates is a stem hominoid that is more derived than previously described small catarrhines and Proconsul. This forces us to reevaluate the role played by small-bodied catarrhines in ape evolution and provides key insight into the last common ancestor of hylobatids (gibbons) and hominids (great apes and humans).


Subject(s)
Biological Evolution , Hominidae/classification , Hylobates/classification , Animals , Body Weight , Bone and Bones/anatomy & histology , Brain/anatomy & histology , Brain/growth & development , Dentition , Hominidae/anatomy & histology , Hominidae/growth & development , Humans , Hylobates/anatomy & histology , Hylobates/growth & development , Phylogeny , Skull/anatomy & histology , Skull/growth & development , Spain
SELECTION OF CITATIONS
SEARCH DETAIL