Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
ASAIO J ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39116298

ABSTRACT

In the initial phases of veno-venous extracorporeal membrane oxygenation (VV ECMO) support for severe acute respiratory distress syndrome (ARDS), ultraprotective controlled mechanical ventilation (CMV) is typically employed to limit the progression of lung injury. As patients recover, transitioning to assisted mechanical ventilation can be considered to reduce the need for prolonged sedation and paralysis. This study aimed to evaluate the feasibility of transitioning to pressure support ventilation (PSV) during VV ECMO and to explore variations in respiratory mechanics and oxygenation parameters following the transition to PSV. This retrospective monocentric study included 191 adult ARDS patients treated with VV ECMO between 2009 and 2022. Within this population, 131 (69%) patients were successfully switched to PSV during ECMO. Pressure support ventilation was associated with an increase in respiratory system compliance (p = 0.02) and a reduction in pulmonary shunt fraction (p < 0.001). Additionally, improvements in the cardiovascular Sequential Organ Failure Assessment score and a reduction in pulmonary arterial pressures (p < 0.05) were recorded. Ninety-four percent of patients who successfully transitioned to PSV were weaned from ECMO, and 118 (90%) were discharged alive from the intensive care unit (ICU). Of those who did not reach PSV, 74% died on ECMO, whereas the remaining patients were successfully weaned from extracorporeal support. In conclusion, PSV is feasible during VV ECMO and potentially correlates with improvements in respiratory function and hemodynamics.

2.
Crit Care ; 28(1): 263, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103945

ABSTRACT

BACKGROUND: Automated analysis of lung computed tomography (CT) scans may help characterize subphenotypes of acute respiratory illness. We integrated lung CT features measured via deep learning with clinical and laboratory data in spontaneously breathing subjects to enhance the identification of COVID-19 subphenotypes. METHODS: This is a multicenter observational cohort study in spontaneously breathing patients with COVID-19 respiratory failure exposed to early lung CT within 7 days of admission. We explored lung CT images using deep learning approaches to quantitative and qualitative analyses; latent class analysis (LCA) by using clinical, laboratory and lung CT variables; regional differences between subphenotypes following 3D spatial trajectories. RESULTS: Complete datasets were available in 559 patients. LCA identified two subphenotypes (subphenotype 1 and 2). As compared with subphenotype 2 (n = 403), subphenotype 1 patients (n = 156) were older, had higher inflammatory biomarkers, and were more hypoxemic. Lungs in subphenotype 1 had a higher density gravitational gradient with a greater proportion of consolidated lungs as compared with subphenotype 2. In contrast, subphenotype 2 had a higher density submantellar-hilar gradient with a greater proportion of ground glass opacities as compared with subphenotype 1. Subphenotype 1 showed higher prevalence of comorbidities associated with endothelial dysfunction and higher 90-day mortality than subphenotype 2, even after adjustment for clinically meaningful variables. CONCLUSIONS: Integrating lung-CT data in a LCA allowed us to identify two subphenotypes of COVID-19, with different clinical trajectories. These exploratory findings suggest a role of automated imaging characterization guided by machine learning in subphenotyping patients with respiratory failure. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04395482. Registration date: 19/05/2020.


Subject(s)
COVID-19 , Lung , Phenotype , Respiratory Insufficiency , Tomography, X-Ray Computed , Humans , COVID-19/diagnostic imaging , COVID-19/physiopathology , Tomography, X-Ray Computed/methods , Female , Male , Middle Aged , Lung/diagnostic imaging , Lung/physiopathology , Aged , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology , Cohort Studies , Adult
3.
Ann Intensive Care ; 14(1): 129, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167241

ABSTRACT

BACKGROUND: This study aimed to develop prognostic models for predicting the need for invasive mechanical ventilation (IMV) in intensive care unit (ICU) patients with COVID-19 and compare their performance with the Respiratory rate-OXygenation (ROX) index. METHODS: A retrospective cohort study was conducted using data collected between March 2020 and August 2021 at three hospitals in Rio de Janeiro, Brazil. ICU patients aged 18 years and older with a diagnosis of COVID-19 were screened. The exclusion criteria were patients who received IMV within the first 24 h of ICU admission, pregnancy, clinical decision for minimal end-of-life care and missing primary outcome data. Clinical and laboratory variables were collected. Multiple logistic regression analysis was performed to select predictor variables. Models were based on the lowest Akaike Information Criteria (AIC) and lowest AIC with significant p values. Assessment of predictive performance was done for discrimination and calibration. Areas under the curves (AUC)s were compared using DeLong's algorithm. Models were validated externally using an international database. RESULTS: Of 656 patients screened, 346 patients were included; 155 required IMV (44.8%), 191 did not (55.2%), and 207 patients were male (59.8%). According to the lowest AIC, arterial hypertension, diabetes mellitus, obesity, Sequential Organ Failure Assessment (SOFA) score, heart rate, respiratory rate, peripheral oxygen saturation (SpO2), temperature, respiratory effort signals, and leukocytes were identified as predictors of IMV at hospital admission. According to AIC with significant p values, SOFA score, SpO2, and respiratory effort signals were the best predictors of IMV; odds ratios (95% confidence interval): 1.46 (1.07-2.05), 0.81 (0.72-0.90), 9.13 (3.29-28.67), respectively. The ROX index at admission was lower in the IMV group than in the non-IMV group (7.3 [5.2-9.8] versus 9.6 [6.8-12.9], p < 0.001, respectively). In the external validation population, the area under the curve (AUC) of the ROX index was 0.683 (accuracy 63%), the AIC model showed an AUC of 0.703 (accuracy 69%), and the lowest AIC model with significant p values had an AUC of 0.725 (accuracy 79%). CONCLUSIONS: In the development population of ICU patients with COVID-19, SOFA score, SpO2, and respiratory effort signals predicted the need for IMV better than the ROX index. In the external validation population, although the AUCs did not differ significantly, the accuracy was higher when using SOFA score, SpO2, and respiratory effort signals compared to the ROX index. This suggests that these variables may be more useful in predicting the need for IMV in ICU patients with COVID-19. GOV IDENTIFIER: NCT05663528.

4.
J Clin Monit Comput ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066871

ABSTRACT

PURPOSE: Airway closure is a interruption of communication between larger and smaller airways. The presence of airway closure during mechanical ventilation may lead to the overestimation of driving pressure (DP), introducing errors in the assessment of respiratory mechanics and in positive end-expiratory pressure (PEEP) setting on the ventilator. Patients with severe acute respiratory distress syndrome (ARDS) may exhibit the airway closure phenomenon, which can be easily diagnosed with a low-flow inflation. Prone positioning is a therapeutic manoeuver proven to reduce mortality in ARDS patients, and has been widely implemented also in patients requiring veno-venous extracorporeal membrane oxygenation (V-V ECMO). To date, the impact of prone positioning on changes in airway closure has not been described. METHODS: We present an image analysis of the pressure waveform during volume-controlled ventilation and low-flow inflations before and after prone positioning in an ARDS patient on VV ECMO. RESULTS: A high airway opening pressure level (23 cmH2O) was detected in the supine position during tidal ventilation. Airway closure was confirmed by using a low-flow inflation. Prone positioning significantly attenuated airway closure, with the airway opening pressure decreasing to 13 cmH2O. After re-supination, airway closure was lower as compared with supine position at baseline (17 cmH2O). CONCLUSION: Prone positioning reduced airway closure in an ARDS patient on VV ECMO support.

5.
ASAIO J ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39078479

ABSTRACT

Cell-free hemoglobin (CFH) is used to detect hemolysis and was recently suggested to trigger acute lung injury. However, its role has not been elucidated in severe acute respiratory distress syndrome (ARDS) patients undergoing extracorporeal membrane oxygenation (ECMO). We investigated the association of carboxyhemoglobin (COHb) and haptoglobin-two indirect markers of hemolysis-with mortality in critically ill patients undergoing veno-venous ECMO (VV-ECMO) with adjusted and longitudinal models (primary aim). Secondary aims included assessment of association between COHb and haptoglobin with the development of ventilator-associated pneumonia (VAP) and with hemodynamics. We retrospectively collected physiological, laboratory biomarkers, and outcome data in 147 patients undergoing VV-ECMO for severe ARDS. Forty-seven patients (32%) died in the intensive care unit (ICU). Average levels of COHb and haptoglobin were higher and lower, respectively, in patients who died. Higher haptoglobin was associated with lower pulmonary (PVR) and systemic vascular resistance, whereas higher COHb was associated with higher PVR. Carboxyhemoglobin was an independent predictor of VAP. Both haptoglobin and COHb independently predicted ICU mortality. In summary, indirect signs of hemolysis including COHb and haptoglobin are associated with modulation of vascular tone, VAP, and ICU mortality in respiratory ECMO. These findings suggest that CFH may be a mechanism of injury in this patient population.

6.
J Anesth Analg Crit Care ; 4(1): 40, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971842

ABSTRACT

BACKGROUND: Lung perfusion defects, mainly due to endothelial and coagulation activation, are a key contributor to COVID-19 respiratory failure. COVID-19 patients may also develop acute kidney injury (AKI) because of renal perfusion deficit. We aimed to explore AKI-associated factors and the independent prediction of standardized minute ventilation (MV)-a proxy of alveolar dead space-on AKI onset and persistence in COVID-19 mechanically ventilated patients. METHODS: This is a multicenter observational cohort study. We enrolled 157 COVID-19 patients requiring mechanical ventilation and intensive care unit (ICU) admission. We collected clinical information, ventilation, and laboratory data. AKI was defined by the 2012 KDIGO guidelines and classified as transient or persistent according to serum creatinine criteria persistence within 48 h. Ordered univariate and multivariate logistic regression analyses were employed to identify variables associated with AKI onset and persistence. RESULTS: Among 157 COVID-19 patients on mechanical ventilation, 47% developed AKI: 10% had transient AKI, and 37% had persistent AKI. The degree of hypoxia was not associated with differences in AKI severity. Across increasing severity of AKI groups, despite similar levels of paCO2, we observed an increased MV and standardized MV, a robust proxy of alveolar dead space. After adjusting for other clinical and laboratory covariates, standardized MV remained an independent predictor of AKI development and persistence. D-dimer levels were higher in patients with persistent AKI. CONCLUSIONS: In critically ill COVID-19 patients with respiratory failure, increased wasted ventilation is independently associated with a greater risk of persistent AKI. These hypothesis-generating findings may suggest that perfusion derangements may link the pathophysiology of both wasted ventilation and acute kidney injury in our population.

8.
J Craniofac Surg ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856193

ABSTRACT

OBJECTIVE: To present characteristics, surgical variables, complications, and postoperative care in pediatric patients with craniofacial synostosis undergoing Le Fort III osteotomy. BACKGROUND: Craniofacial synostoses are a group of genetic syndromes that result in premature fusion of cranial and facial sutures, leading to craniofacial deformities and associated complications. Midface advancement through Le Fort III osteotomy is the most frequent surgical option for these conditions. METHODS: Retrospective monocentric cohort study including patients with syndromic craniofacial synostosis who underwent Le Fort III osteotomy between 2009 and 2022 in a specialized referral center. Data collection encompassed surgical time, blood loss, intraoperative transfusions, fluid balance, and postoperative parameters such as duration of invasive mechanical ventilation and intensive care unit (ICU) length of stay. RESULTS: Twenty-six children were included in the analysis. The median surgical time was 345 minutes (300-360), with an estimated blood loss of 15 (9.9-24) mL/kg. Patients required a median transfusion of 12.63 (7.1-24.5) mL/kg of packed red blood cells and 19.82 (11.1-33) mL/kg of fresh frozen plasma. Intraoperative fluid balance was + 12.5 (0.8-22.8) mL/kg, with a median infusion of 30.4 (23.9-38.7) mL/kg of crystalloids. All patients were transferred to the ICU after surgery to ensure a safe environment for extubation. The median duration of mechanical ventilation in the ICU was 30 (20.25-45) hours, and postoperative ICU length of stay was 2 (2-4) days, and complications were infrequent, with only one extubation failure recorded. CONCLUSION: Le Fort III osteotomy in craniofacial synostosis patients may be characterized by a complex perioperative course. A multidisciplinary approach in the care of these patients allows for minimizing complications in the perioperative phase. Further research is needed to enhance perioperative management in this unique patient population.

9.
Article in English | MEDLINE | ID: mdl-38526489

ABSTRACT

RATIONALE: Blood flow rate affects mixed venous oxygenation (SvO2) during venovenous extracorporeal membrane oxygenation (ECMO), with possible effects on the pulmonary circulation and the right heart function. OBJECTIVES: We aimed at describing the physiologic effects of different levels of SvO2 obtained by changing ECMO blood flow, in patients with severe ARDS receiving ECMO and controlled mechanical ventilation. METHODS: Low (SvO2 target 70-75%), intermediate (SvO2 target 75-80%) and high (SvO2 target > 80%) ECMO blood flows were applied for 30 minutes in random order in 20 patients. Mechanical ventilation settings were left unchanged. The hemodynamic and pulmonary effects were assessed with pulmonary artery catheter and electrical impedance tomography (EIT). MEASUREMENTS AND MAIN RESULTS: Cardiac output decreased from low to intermediate and to high blood flow/SvO2 (9.2 [6.2-10.9] vs 8.3 [5.9-9.8] vs 7.9 [6.5-9.1] L/min, p = 0.014), as well as mean pulmonary artery pressure (34 ± 6 vs 31 ± 6 vs 30 ± 5 mmHg, p < 0.001), and right ventricle stroke work index (14.2 ± 4.4 vs 12.2 ± 3.6 vs 11.4 ± 3.2 g*m/beat/m2, p = 0.002). Cardiac output was inversely correlated with mixed venous and arterial PO2 values (R2 = 0.257, p = 0.031 and R2 = 0.324, p = 0.05). Pulmonary artery pressure was correlated with decreasing mixed venous PO2 (R2 = 0.29, p <0.001) and with increasing cardiac output (R2 = 0.378 p < 0.007). Measures of ventilation/perfusion mismatch did not differ between the three steps. CONCLUSIONS: In severe ARDS patients, increased ECMO blood flow rate resulting in higher SvO2 decreases pulmonary artery pressure, cardiac output, and right heart workload. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

10.
J Anesth Analg Crit Care ; 4(1): 18, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38449055

ABSTRACT

BACKGROUND: Pulmonary shunt refers to the passage of venous blood into the arterial blood system bypassing the alveoli-blood gas exchange. Pulmonary shunt is defined by a drop in the physiologic coupling of lung ventilation and lung perfusion. This may consequently lead to respiratory failure. MAIN BODY: The pulmonary shunt assessment is often neglected. From a mathematical point of view, pulmonary shunt can be assessed by estimating the degree of mixing between oxygenated and deoxygenated blood. To compute the shunt, three key components are analyzed: the oxygen (O2) content in the central venous blood before gas exchange, the calculated O2 content in the pulmonary capillaries after gas exchange, and the O2 content in the arterial system, after the mixing of shunted and non-shunted blood. Computing the pulmonary shunt becomes of further importance in patients on extracorporeal membrane oxygenation (ECMO), as arterial oxygen levels may not directly reflect the gas exchange of the native lung. CONCLUSION: In this review, the shunt analysis and its practical clinical applications in different scenarios are discussed by using an online shunt simulator.

11.
Heliyon ; 10(6): e28339, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38524568

ABSTRACT

Introduction: The improvement in oxygenation after helmet application in hypoxemic patients may be explained by the alveolar recruitment obtained with positive end expiratory pressure (PEEP) or by the administration of a more accurate inspiratory fraction of oxygen (FiO2). We have designed the "ZEEP-PEEP test", capable to distinguish between the FiO2-related or PEEP-related oxygenation improvement. Our primary aim was to describe the use of this test during helmet CPAP to assess the oxygenation improvement attributable to PEEP application. Material and methods: We performed a prospective physiological study including adult critically ill patients. Respiratory and hemodynamic parameters were recorded before helmet application (PRE step), after helmet application without PEEP (ZEEP step) and after the application of the PEEP valve (PEEP step), while maintaining a constant FiO2. We defined as "PEEP responders" patients showing a PaO2/FiO2 ratio improvement ≥10% after PEEP application. Results: 93 patients were enrolled. Compared to the PRE step, PaO2/FiO2 ratio was significantly improved during helmet CPAP both at ZEEP and PEEP step (189 ± 55, 219 ± 74 and 241 ± 82 mmHg, respectively, p < 0.01). Both PEEP responders (41%) and non-responders showed a significant improvement of PaO2/FiO2 ratio after the application of helmet at ZEEP, PEEP responders also showed a significant improvement of oxygenation after PEEP application (208 ± 70 vs 267 ± 85, p < 0.01). Conclusions: Helmet CPAP improved oxygenation. This improvement was not only due to the PEEP effect, but also to the increase of the effective inspired FiO2. Performing the ZEEP-PEEP test may help to identify patients who benefit from PEEP.

12.
Perfusion ; : 2676591241240036, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485936

ABSTRACT

INTRODUCTION: Critical poisoning with sodium nitrite (NaNO2) can present challenges in promptly identifying and managing acute methemoglobinemia. CASE REPORT: We report the case of an overt self-intoxication by an initially unknown agent, leading to cardiac arrest. Despite prodromal signs of cyanosis, coma, desaturation, and hypotension, methemoglobinemia went unrecognized during extracorporeal cardiopulmonary resuscitation (ECPR) as the point-of-care test failed to provide methemoglobin levels, leading to untreated methemoglobinemia. The blood flowing through the oxygenator notably maintained the same brown colour. Return of spontaneous circulation was never achieved, and the patient was declared dead after 60 min of unsuccessful resuscitation. Cause of death by means of NaNO2 voluntary ingestion was later clarified and confirmed by postmortem finding of elevated nitrite and nitrate concentration. CONCLUSIONS: This case highlights the risk of failure of ECPR in the context of cardiac arrest due to methemoglobinemia, emphasizing the critical need for prompt recognition of the causative agent and early administration of antidotes.

13.
Intensive Crit Care Nurs ; 82: 103631, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38309144

ABSTRACT

INTRODUCTION: Over the last few decades, the use of veno-venous extracorporeal membrane oxygenation (VV-ECMO) support for severe respiratory failure has increased. AIM: This study aimed to assess the long-term outcomes of patients treated with VV-ECMO for respiratory failure. METHODS: We performed a single-centre prospective evaluation of patients on VV-ECMO who were successfully discharged from the intensive care unit of an Italian University Hospital between January 2018 and May 2021. The enrolled patients underwent follow-up evaluations at 6 and 12 months after ICU discharge. The follow-up team performed psychological and functional assessments using the following instruments: Hospital Anxiety and Depression Scale (HADS), Post-traumatic Stress Disorder Symptom Severity Scale (PTSS-10), Euro Quality Five Domains Five Levels (EQ-5L-5D), and 6-minute walk test. RESULTS: We enrolled 33 patients who were evaluated at a follow-up clinic. The median patient age was 51 years (range: 45-58 years). The median duration of VV-ECMO support was 12 (9-19) days and the length of ICU stay was 23 (18-42) days. A HADS score higher than 14 was reported in 8 (24 %) and 7 (21 %) patients at the six- and twelve-month visit, respectively. PTSS-10 total score ≥ 35 points was present in three (9 %) and two (6 %) patients at the six- and twelve-month examination. The median EQ-5L-5D-VAS was respectively 80 (80-90) and 87.5 (70-95). The PTSS-10 score significantly decreased from six to 12 months in COVID-19 survivors (p = 0.024). CONCLUSIONS: In this cohort of patients treated with VV-ECMO, cognitive and psychological outcomes were good and comparable to those of patients with Adult Respiratory Distress Syndrome (ARDS) managed without ECMO. IMPLICATIONS FOR CLINICAL PRACTICE: The findings of this study confirm the need for long-term follow-up and rehabilitation programs for every ICU survivor after discharge. COVID-19 survivors treated with VV-ECMO had outcomes comparable to those reported in non-COVID patients.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Insufficiency , Stress Disorders, Post-Traumatic , Humans , Middle Aged , Extracorporeal Membrane Oxygenation/psychology , Intensive Care Units , Retrospective Studies , Stress Disorders, Post-Traumatic/therapy
14.
Crit Care Explor ; 6(2): e1039, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343444

ABSTRACT

OBJECTIVES: In patients with COVID-19 respiratory failure, controlled mechanical ventilation (CMV) is often necessary during the acute phases of the disease. Weaning from CMV to pressure support ventilation (PSV) is a key objective when the patient's respiratory functions improve. Limited evidence exists regarding the factors predicting a successful transition to PSV and its impact on patient outcomes. DESIGN: Retrospective observational cohort study. SETTING: Twenty-four Italian ICUs from February 2020 to May 2020. PATIENTS: Mechanically ventilated ICU patients with COVID-19-induced respiratory failure. INTERVENTION: The transition period from CMV to PSV was evaluated. We defined it as "failure of assisted breathing" if the patient returned to CMV within the first 72 hours. MEASUREMENTS AND MAIN RESULTS: Of 1260 ICU patients screened, 514 were included. Three hundred fifty-seven patients successfully made the transition to PSV, while 157 failed. Pao2/Fio2 ratio before the transition emerged as an independent predictor of a successful shift (odds ratio 1.00; 95% CI, 0.99-1.00; p = 0.003). Patients in the success group displayed a better trend in Pao2/Fio2, Paco2, plateau and peak pressure, and pH level. Subjects in the failure group exhibited higher ICU mortality (hazard ratio 2.08; 95% CI, 1.42-3.06; p < 0.001), an extended ICU length of stay (successful vs. failure 21 ± 14 vs. 27 ± 17 d; p < 0.001) and a longer duration of mechanical ventilation (19 ± 18 vs. 24 ± 17 d, p = 0.04). CONCLUSIONS: Our study emphasizes that the Pao2/Fio2 ratio was the sole independent factor associated with a failed transition from CMV to PSV. The unsuccessful transition was associated with worse outcomes.

15.
Pharmacoepidemiol Drug Saf ; 33(2): e5767, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38357800

ABSTRACT

PURPOSE: Medication poisoning is the most common method of self-harm. Longitudinal studies incorporating pre- and post-COVID-19 pandemic data are required to describe the phenomenon and to evaluate the long-term impact on mental health. METHODS: Calls to the Poison Control Center of Policlinico Umberto I Hospital - Sapienza University of Rome, Italy, were analyzed retrospectively for characteristics and clinical presentation of cases of interest from January 2018 to December 2022. RESULTS: A total of 756 cases of self-harm by medication poisonings were recorded in the study period. A reduction in rate of cases in 2020 was followed by a return to pre-pandemic levels by 2021. When separately analyzing single- and multi-agent cases, occurrence of cases involving just one medication increased since early 2021, with a peak in 2022 (7.8% of total calls, 95% CI 6.2-9.5, from 4.9%, 95% CI 4.1-5.8 in 2018). This increase in the rate of cases, mostly of none or mild severity, was driven by youth aged 12-21, in which the relative proportion of single- versus multi-agent cases showed an increasing trend since 2020 (from 42.6% in 2018 to 78.6% in 2022). Acetaminophen was the medication most frequently involved and benzodiazepines the largest class. A psychiatric background was increasingly seen in 2022, especially in age group 12-21. CONCLUSION: Single-agent medication self-harm may be an increasingly prevailing phenomenon. Young adolescents with a psychiatric background might be most vulnerable to this behavior in the COVID-19 pandemic aftermath. Healthcare professionals should expect favorable clinical outcome and improve both counseling and psychotherapy supervision in individuals at risk.


Subject(s)
COVID-19 , Poisoning , Self-Injurious Behavior , Adolescent , Humans , Retrospective Studies , Poison Control Centers , Pandemics , Self-Injurious Behavior/epidemiology , COVID-19/epidemiology , Poisoning/epidemiology , Poisoning/therapy
16.
J Clin Monit Comput ; 38(2): 539-551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38238635

ABSTRACT

Tidal volume (TV) monitoring breath-by-breath is not available at bedside in non-intubated patients. However, TV monitoring may be useful to evaluate the work of breathing. A non-invasive device based on bioimpedance provides continuous and real-time volumetric tidal estimation during spontaneous breathing. We performed a prospective study in healthy volunteers aimed at evaluating the accuracy, the precision and the trending ability of measurements of ExSpiron®Xi as compared with the gold standard (i.e. spirometry). Further, we explored whether the differences between the 2 devices would be improved by the calibration of ExSpiron®Xi with a pre-determined tidal volume. Analysis accounted for the repeated nature of measurements within each subject. We enrolled 13 healthy volunteers, including 5 men and 8 women. Tidal volume, TV/ideal body weight (IBW) and respiratory rate (RR) measured with spirometer (TVSpirometer) and with ExSpiron®Xi (TVExSpiron) showed a robust correlation, while minute ventilation (MV) showed a weak correlation, in both non/calibrated and calibrated steps. The analysis of the agreement showed that non-calibrated TVExSpiron underestimated TVspirometer, while in the calibrated steps, TVExSpiron overestimated TVspirometer. The calibration procedure did not reduce the average absolute difference (error) between TVSpirometer and TVExSpiron. This happened similarly for TV/IBW and MV, while RR showed high accuracy and precision. The trending ability was excellent for TV, TV/IBW and RR. The concordance rate (CR) was >95% in both calibrated and non-calibrated measurements. The trending ability of minute ventilation was limited. Absolute error for both calibrated and not calibrated values of TV, TV/IBW and MV accounting for repeated measurements was variably associated with BMI, height and smoking status. Conclusions: Non-invasive TV, TV/IBW and RR estimation by ExSpiron®Xi was strongly correlated with tidal ventilation according to the gold standard spirometer technique. This data was not confirmed for MV. The calibration of the device did not improve its performance. Although the accuracy of ExSpiron®Xi was mild and the precision was limited for TV, TV/IBW and MV, the trending ability of the device was strong specifically for TV, TV/IBW and RR. This makes ExSpiron®Xi a non-invasive monitoring system that may detect real-time tidal volume ventilation changes and then suggest the need to better optimize the patient ventilatory support.


Subject(s)
Respiration , Male , Humans , Female , Prospective Studies , Healthy Volunteers , Tidal Volume , Lung Volume Measurements/methods
17.
PLoS One ; 19(1): e0282546, 2024.
Article in English | MEDLINE | ID: mdl-38198467

ABSTRACT

Whether Clonal Hematopoiesis (CH) represents a risk factor for severity of the COVID-19 disease remains a controversial issue. We report the first high- sensitivity analysis of CH in COVID-19 patients (threshold of detection at 0.5% vs 1 or 2% in previous studies). We analyzed 24 patients admitted to ICU for COVID-19 (COV-ICU) and 19 controls, including healthy subjects and asymptomatic SARS-CoV2-positive individuals. Despite the significantly higher numbers of CH mutations identified (80% mutations with <2% variant allele frequency, VAF), we did not find significant differences between COV-ICU patients and controls in the prevalence of CH or in the numbers, VAF or functional categories of the mutated genes, suggesting that CH is not overrepresented in patients with COVID-19. However, when considering potential drivers CH mutations (CH-PD), COV-ICU patients showed higher clonal complexity, in terms of both mutation numbers and VAF, and enrichment of variants reported in myeloid neoplasms. However, we did not score an impact of increased CH-PD on patient survival or clinical parameters associated with inflammation. These data suggest that COVID-19 influence the clonal composition of the peripheral blood and call for further investigations addressing the potential long-term clinical impact of CH on people experiencing severe COVID-19. We acknowledge that it will indispensable to perform further studies on larger patient cohorts in order to validate and generalize our conclusions. Moreover, we performed CH analysis at a single time point. It will be necessary to consider longitudinal approaches with long periods of follow-up in order to assess if the COVID-19 disease could have an impact on the evolution of CH and long-term consequences in patients that experienced severe COVID-19.


Subject(s)
COVID-19 , Clonal Hematopoiesis , Humans , Clonal Hematopoiesis/genetics , RNA, Viral , COVID-19/genetics , SARS-CoV-2/genetics , Mutation
18.
ASAIO J ; 70(7): 633-639, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38237635

ABSTRACT

Bilevel-positive airway pressure (BiPAP) is a noninvasive respiratory support modality which reduces effort in patients with respiratory failure. However, it may increase tidal ventilation and transpulmonary pressure, potentially aggravating lung injury. We aimed to assess if the use of BiPAP before intubation was associated with increased mortality in adult patients with coronavirus disease 2019 (COVID-19) who received venovenous extracorporeal membrane oxygenation (ECMO). We used the Extracorporeal Life Support Organization Registry to analyze adult patients with COVID-19 supported with venovenous ECMO from January 1, 2020, to December 31, 2021. Patients treated with BiPAP were compared with patients who received other modalities of respiratory support or no respiratory support. A total of 9,819 patients from 421 centers were included. A total of 3,882 of them (39.5%) were treated with BiPAP before endotracheal intubation. Patients supported with BiPAP were intubated later (4.3 vs . 3.3 days, p < 0.001) and showed higher unadjusted hospital mortality (51.7% vs. 44.9%, p < 0.001). The use of BiPAP before intubation and time from hospital admission to intubation resulted as independently associated with increased hospital mortality (odds ratio [OR], 1.32 [95% confidence interval {CI}, 1.08-1.61] and 1.03 [1-1.06] per day increase). In ECMO patients with severe acute respiratory failure due to COVID-19, the extended use of BiPAP before intubation should be regarded as a risk factor for mortality.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Intubation, Intratracheal , Noninvasive Ventilation , Registries , Humans , COVID-19/mortality , COVID-19/therapy , COVID-19/complications , Extracorporeal Membrane Oxygenation/methods , Registries/statistics & numerical data , Female , Male , Middle Aged , Intubation, Intratracheal/statistics & numerical data , Aged , Noninvasive Ventilation/methods , Adult , Hospital Mortality , Respiratory Insufficiency/therapy , Respiratory Insufficiency/mortality , Retrospective Studies
19.
Am J Respir Crit Care Med ; 209(5): 563-572, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38190718

ABSTRACT

Rationale: Hypoxemia during mechanical ventilation might be worsened by expiratory muscle activity, which reduces end-expiratory lung volume through lung collapse. A proposed mechanism of benefit of neuromuscular blockade in acute respiratory distress syndrome (ARDS) is the abolition of expiratory efforts. This may contribute to the restoration of lung volumes. The prevalence of this phenomenon, however, is unknown. Objectives: To investigate the incidence and amount of end-expiratory lung impedance (EELI) increase after the administration of neuromuscular blocking agents (NMBAs), clinical factors associated with this phenomenon, its impact on regional lung ventilation, and any association with changes in pleural pressure. Methods: We included mechanically ventilated patients with ARDS monitored with electrical impedance tomography (EIT) who received NMBAs in one of two centers. We measured changes in EELI, a surrogate for end-expiratory lung volume, before and after NMBA administration. In an additional 10 patients, we investigated the characteristic signatures of expiratory muscle activity depicted by EIT and esophageal catheters simultaneously. Clinical factors associated with EELI changes were assessed. Measurements and Main Results: We included 46 patients, half of whom showed an increase in EELI of >10% of the corresponding Vt (46.2%; IQR, 23.9-60.9%). The degree of EELI increase correlated positively with fentanyl dosage and negatively with changes in end-expiratory pleural pressures. This suggests that expiratory muscle activity might exert strong counter-effects against positive end-expiratory pressure that are possibly aggravated by fentanyl. Conclusions: Administration of NMBAs during EIT monitoring revealed activity of expiratory muscles in half of patients with ARDS. The resultant increase in EELI had a dose-response relationship with fentanyl dosage. This suggests a potential side effect of fentanyl during protective ventilation.


Subject(s)
Neuromuscular Blocking Agents , Respiratory Distress Syndrome , Humans , Positive-Pressure Respiration/methods , Lung , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Fentanyl/therapeutic use
20.
ASAIO J ; 70(4): 293-298, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37934747

ABSTRACT

Mortality prediction for patients with the severe acute respiratory distress syndrome (ARDS) supported with veno-venous extracorporeal membrane oxygenation (VV-ECMO) is challenging. Clinical variables at baseline and on day 3 after initiation of ECMO support of all patients treated from October 2010 through April 2020 were analyzed. Multivariate logistic regression analysis was used to identify score variables. Internal and external (Monza, Italy) validation was used to evaluate the predictive value of the model. Overall, 272 patients could be included for data analysis and creation of the PREDICT VV-ECMO score. The score comprises five parameters (age, lung fibrosis, immunosuppression, cumulative fluid balance, and ECMO sweep gas flow on day 3). Higher score values are associated with a higher probability of hospital death. The score showed favorable results in derivation and external validation cohorts (area under the receiver operating curve, AUC derivation cohort 0.76 [95% confidence interval, CI, 0.71-0.82] and AUC validation cohort 0.74 [95% CI, 0.67-0.82]). Four risk classes were defined: I ≤ 30, II 31-60, III 61-90, and IV ≥ 91 with a predicted mortality of 28.2%, 56.2%, 84.8%, and 96.1%, respectively. The PREDICT VV-ECMO score suggests favorable performance in predicting hospital mortality under ongoing ECMO support providing a sound basis for further evaluation in larger cohorts.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Extracorporeal Membrane Oxygenation/methods , Retrospective Studies , Hospital Mortality , Respiratory Distress Syndrome/therapy , Italy
SELECTION OF CITATIONS
SEARCH DETAIL