Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
2.
Nutrients ; 15(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686804

ABSTRACT

Since its introduction, aspartame-the leading sweetener in U.S. diet sodas (DS)-has been reported to cause neurological problems in some users. In prospective studies, the offspring of mothers who consumed diet sodas/beverages (DSB) daily during pregnancy experienced increased health problems. We hypothesized that gestational/early-life exposure to ≥1 DS/day (DSearly) or equivalent aspartame (ASPearly: ≥177 mg/day) increases autism risk. The case-control Autism Tooth Fairy Study obtained retrospective dietary recalls for DSB and aspartame consumption during pregnancy/breastfeeding from the mothers of 235 offspring with autism spectrum disorder (ASD: cases) and 121 neurotypically developing offspring (controls). The exposure odds ratios (ORs) for DSearly and ASPearly were computed for autism, ASD, and the non-regressive conditions of each. Among males, the DSearly odds were tripled for autism (OR = 3.1; 95% CI: 1.02, 9.7) and non-regressive autism (OR = 3.5; 95% CI: 1.1, 11.1); the ASPearly odds were even higher: OR = 3.4 (95% CI: 1.1, 10.4) and 3.7 (95% CI: 1.2, 11.8), respectively (p < 0.05 for each). The ORs for non-regressive ASD in males were almost tripled but were not statistically significant: DSearly OR = 2.7 (95% CI: 0.9, 8.4); ASPearly OR = 2.9 (95% CI: 0.9, 8.8). No statistically significant associations were found in females. Our findings contribute to the growing literature raising concerns about potential offspring harm from maternal DSB/aspartame intake in pregnancy.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Female , Male , Pregnancy , Humans , Aspartame/adverse effects , Autistic Disorder/chemically induced , Autistic Disorder/epidemiology , Case-Control Studies , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/etiology , Retrospective Studies , Prospective Studies , Diet
3.
Sci Rep ; 11(1): 871, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441626

ABSTRACT

High concentrations of carotenoids are protective against cardiometabolic risk traits (CMTs) in adults and children. We recently showed in non-diabetic Mexican American (MA) children that serum α-carotene and ß-carotene are inversely correlated with obesity measures and triglycerides and positively with HDL cholesterol and that they were under strong genetic influences. Additionally, we previously described a Pediatric Metabolic Index (PMI) that helps in the identification of children who are at risk for cardiometabolic diseases. Here, we quantified serum lycopene and ß-cryptoxanthin concentrations in approximately 580 children from MA families using an ultraperformance liquid chromatography-photodiode array and determined their heritabilities and correlations with CMTs. Using response surface methodology (RSM), we determined two-way interactions of carotenoids and PMI on Matsuda insulin sensitivity index (ISI). The concentrations of lycopene and ß-cryptoxanthin were highly heritable [h2 = 0.98, P = 7 × 10-18 and h2 = 0.58, P = 1 × 10-7]. We found significant (P ≤ 0.05) negative phenotypic correlations between ß-cryptoxanthin and five CMTs: body mass index (- 0.22), waist circumference (- 0.25), triglycerides (- 0.18), fat mass (- 0.23), fasting glucose (- 0.09), and positive correlations with HDL cholesterol (0.29). In contrast, lycopene only showed a significant negative correlation with fasting glucose (- 0.08) and a positive correlation with HDL cholesterol (0.18). Importantly, we found that common genetic influences significantly contributed to the observed phenotypic correlations. RSM showed that increased serum concentrations of α- and ß-carotenoids rather than that of ß-cryptoxanthin or lycopene had maximal effects on ISI. In summary, our findings suggest that the serum carotenoids are under strong additive genetic influences and may have differential effects on susceptibility to CMTs in children.


Subject(s)
Carotenoids/blood , Insulin Resistance/ethnology , Insulin Resistance/physiology , Mexican Americans , Adolescent , Beta-Cryptoxanthin/blood , Body Mass Index , Child , Cholesterol, HDL/blood , Chromatography, Liquid/methods , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diet , Female , Humans , Lycopene/blood , Male , Obesity/blood , Obesity/metabolism , Phenotype , Risk Factors , Texas , Triglycerides/blood , Waist Circumference
4.
PLoS One ; 15(10): e0240467, 2020.
Article in English | MEDLINE | ID: mdl-33057385

ABSTRACT

AIM: Acanthosis nigricans (AN) is a strong correlate of obesity and is considered a marker of insulin resistance (IR). AN is associated with various other cardiometabolic risk factors (CMRFs). However, the direct causal relationship of IR with AN in obesity has been debated. Therefore, we aimed to examine the complex causal relationships among the troika of AN, obesity, and IR in Mexican Americans (MAs). METHODS: We used data from 670 non-diabetic MA children, aged 6-17 years (49% girls). AN (prevalence 33%) severity scores (range 0-5) were used as a quasi-quantitative trait (AN-q) for analysis. We used the program SOLAR for determining phenotypic, genetic, and environmental correlations between AN-q and CMRFs (e.g., BMI, HOMA-IR, lipids, blood pressure, hs-C-reactive protein (CRP), and Harvard physical fitness score (PFS)). The genetic and environmental correlations were subsequently used in mediation analysis (AMOS program). Model comparisons were made using goodness-of-fit indexes. RESULTS: Heritability of AN-q was 0.75 (p<0.0001). It was positively/significantly (p<0.05) correlated with traits such as BMI, HOMA-IR, and CRP, and negatively with HDL-C and PFS. Of the models tested, indirect mediation analysis of BMI→HOMA-IR→AN-q yielded lower goodness-of-fit than a partial mediation model where BMI explained the relationship with both HOMA-IR and AN-q simultaneously. Using complex models, BMI was associated with AN-q and IR mediating most of the CMRFs; but no relationship between IR and AN-q. CONCLUSION: Our study suggests that obesity explains the association of IR with AN, but no causal relationship between IR and AN in Mexican American children.


Subject(s)
Acanthosis Nigricans/physiopathology , Cardiovascular Diseases/etiology , Insulin Resistance , Metabolic Syndrome/etiology , Mexican Americans/statistics & numerical data , Obesity/epidemiology , Adolescent , Biomarkers/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Child , Female , Humans , Incidence , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Obesity/complications , United States/epidemiology
5.
Genet Epidemiol ; 42(4): 378-393, 2018 06.
Article in English | MEDLINE | ID: mdl-29460292

ABSTRACT

Knowledge on genetic and environmental (G × E) interaction effects on cardiometabolic risk factors (CMRFs) in children is limited.  The purpose of this study was to examine the impact of G × E interaction effects on CMRFs in Mexican American (MA) children (n = 617, ages 6-17 years). The environments examined were sedentary activity (SA), assessed by recalls from "yesterday" (SAy) and "usually" (SAu) and physical fitness (PF) assessed by Harvard PF scores (HPFS). CMRF data included body mass index (BMI), waist circumference (WC), fat mass (FM), fasting insulin (FI), homeostasis model of assessment-insulin resistance (HOMA-IR), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), systolic (SBP) and diastolic (DBP) blood pressure, and number of metabolic syndrome components (MSC). We examined potential G × E interaction in the phenotypic expression of CMRFs using variance component models and likelihood-based statistical inference. Significant G × SA interactions were identified for six CMRFs: BMI, WC, FI, HOMA-IR, MSC, and HDL, and significant G × HPFS interactions were observed for four CMRFs: BMI, WC, FM, and HOMA-IR. However, after correcting for multiple hypothesis testing, only WC × SAy, FM × SAy, and FI × SAu interactions became marginally significant. After correcting for multiple testing, most of CMRFs exhibited significant G × E interactions (Reduced G × E model vs. Constrained model). These findings provide evidence that genetic factors interact with SA and PF to influence variation in CMRFs, and underscore the need for better understanding of these relationships to develop strategies and interventions to effectively reduce or prevent cardiometabolic risk in children.


Subject(s)
Cardiovascular Diseases/genetics , Gene-Environment Interaction , Metabolic Syndrome/genetics , Mexican Americans/genetics , Physical Fitness , Sedentary Behavior , Adolescent , Blood Glucose/metabolism , Body Mass Index , Child , Female , Genetic Variation , Humans , Likelihood Functions , Male , Models, Genetic , Multifactorial Inheritance/genetics , Risk Factors , Waist Circumference/genetics
6.
Am J Clin Nutr ; 106(1): 52-58, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28515064

ABSTRACT

Background: Dietary intake of phytonutrients present in fruits and vegetables, such as carotenoids, is associated with a lower risk of obesity and related traits, but the impact of genetic variation on these associations is poorly understood, especially in children.Objective: We estimated common genetic influences on serum carotenoid concentrations and obesity-related traits in Mexican American (MA) children.Design: Obesity-related data were obtained from 670 nondiabetic MA children, aged 6-17 y. Serum α- and ß-carotenoid concentrations were measured in ∼570 (α-carotene in 565 and ß-carotene in 572) of these children with the use of an ultraperformance liquid chromatography-photodiode array. We determined heritabilities for both carotenoids and examined their genetic relation with 10 obesity-related traits [body mass index (BMI), waist circumference (WC), high-density lipoprotein (HDL) cholesterol, triglycerides, fat mass (FM), systolic and diastolic blood pressure, fasting insulin and glucose, and homeostasis model assessment of insulin resistance] by using family data and a variance components approach. For these analyses, carotenoid values were inverse normalized, and all traits were adjusted for significant covariate effects of age and sex.Results: Carotenoid concentrations were highly heritable and significant [α-carotene: heritability (h2) = 0.81, P = 6.7 × 10-11; ß-carotene: h2 = 0.90, P = 3.5 × 10-15]. After adjusting for multiple comparisons, we found significant (P ≤ 0.05) negative phenotypic correlations between carotenoid concentrations and the following traits: BMI, WC, FM, and triglycerides (range: α-carotene = -0.19 to -0.12; ß-carotene = -0.24 to -0.13) and positive correlations with HDL cholesterol (α-carotene = 0.17; ß-carotene = 0.24). However, when the phenotypic correlations were partitioned into genetic and environmental correlations, we found marginally significant (P = 0.051) genetic correlations only between ß-carotene and BMI (-0.27), WC (-0.30), and HDL cholesterol (0.31) after accounting for multiple comparisons. None of the environmental correlations were significant.Conclusions: The findings from this study suggest that the serum carotenoid concentrations were under strong additive genetic influences based on variance components analyses, and that the common genetic factors may influence ß-carotene and obesity and lipid traits in MA children.


Subject(s)
Carotenoids/genetics , Mexican Americans/genetics , Nutritional Status , Obesity/genetics , Phenotype , Quantitative Trait, Heritable , beta Carotene/genetics , Adipose Tissue/metabolism , Adolescent , Body Mass Index , Carotenoids/blood , Child , Environment , Female , Gene-Environment Interaction , Humans , Male , Obesity/blood , Obesity/metabolism , Triglycerides/blood , Waist Circumference , beta Carotene/blood
7.
BMC Proc ; 10(Suppl 7): 71-77, 2016.
Article in English | MEDLINE | ID: mdl-27980614

ABSTRACT

BACKGROUND: The Genetic Analysis Workshops (GAW) are a forum for development, testing, and comparison of statistical genetic methods and software. Each contribution to the workshop includes an application to a specified data set. Here we describe the data distributed for GAW19, which focused on analysis of human genomic and transcriptomic data. METHODS: GAW19 data were donated by the T2D-GENES Consortium and the San Antonio Family Heart Study and included whole genome and exome sequences for odd-numbered autosomes, measures of gene expression, systolic and diastolic blood pressures, and related covariates in two Mexican American samples. These two samples were a collection of 20 large families with whole genome sequence and transcriptomic data and a set of 1943 unrelated individuals with exome sequence. For each sample, simulated phenotypes were constructed based on the real sequence data. 'Functional' genes and variants for the simulations were chosen based on observed correlations between gene expression and blood pressure. The simulations focused primarily on additive genetic models but also included a genotype-by-medication interaction. A total of 245 genes were designated as 'functional' in the simulations with a few genes of large effect and most genes explaining < 1 % of the trait variation. An additional phenotype, Q1, was simulated to be correlated among related individuals, based on theoretical or empirical kinship matrices, but was not associated with any sequence variants. Two hundred replicates of the phenotypes were simulated. The GAW19 data are an expansion of the data used at GAW18, which included the family-based whole genome sequence, blood pressure, and simulated phenotypes, but not the gene expression data or the set of 1943 unrelated individuals with exome sequence.

8.
Nat Commun ; 7: 11992, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27356620

ABSTRACT

Progranulin (GRN) loss-of-function mutations leading to progranulin protein (PGRN) haploinsufficiency are prevalent genetic causes of frontotemporal dementia. Reports also indicated PGRN-mediated neuroprotection in models of Alzheimer's and Parkinson's disease; thus, increasing PGRN levels is a promising therapeutic for multiple disorders. To uncover novel PGRN regulators, we linked whole-genome sequence data from 920 individuals with plasma PGRN levels and identified the prosaposin (PSAP) locus as a new locus significantly associated with plasma PGRN levels. Here we show that both PSAP reduction and overexpression lead to significantly elevated extracellular PGRN levels. Intriguingly, PSAP knockdown increases PGRN monomers, whereas PSAP overexpression increases PGRN oligomers, partly through a protein-protein interaction. PSAP-induced changes in PGRN levels and oligomerization replicate in human-derived fibroblasts obtained from a GRN mutation carrier, further supporting PSAP as a potential PGRN-related therapeutic target. Future studies should focus on addressing the relevance and cellular mechanism by which PGRN oligomeric species provide neuroprotection.


Subject(s)
Frontotemporal Dementia/genetics , Intercellular Signaling Peptides and Proteins/genetics , Saposins/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Frontotemporal Dementia/metabolism , Gene Knockdown Techniques , Haploinsufficiency , HeLa Cells , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Knockout , Parkinson Disease/genetics , Parkinson Disease/metabolism , Polymorphism, Single Nucleotide , Progranulins , Protein Interaction Maps
9.
Physiol Behav ; 164(Pt B): 517-523, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27129676

ABSTRACT

For more than a decade, pioneering animal studies conducted by investigators at Purdue University have provided evidence to support a central thesis: that the uncoupling of sweet taste and caloric intake by low-calorie sweeteners (LCS) can disrupt an animal's ability to predict the metabolic consequences of sweet taste, and thereby impair the animal's ability to respond appropriately to sweet-tasting foods. These investigators' work has been replicated and extended internationally. There now exists a body of evidence, from a number of investigators, that animals chronically exposed to any of a range of LCSs - including saccharin, sucralose, acesulfame potassium, aspartame, or the combination of erythritol+aspartame - have exhibited one or more of the following conditions: increased food consumption, lower post-prandial thermogenesis, increased weight gain, greater percent body fat, decreased GLP-1 release during glucose tolerance testing, and significantly greater fasting glucose, glucose area under the curve during glucose tolerance testing, and hyperinsulinemia, compared with animals exposed to plain water or - in many cases - even to calorically-sweetened foods or liquids. Adverse impacts of LCS have appeared diminished in animals on dietary restriction, but were pronounced among males, animals genetically predisposed to obesity, and animals with diet-induced obesity. Impacts have been especially striking in animals on high-energy diets: diets high in fats and sugars, and diets which resemble a highly-processed 'Western' diet, including trans-fatty acids and monosodium glutamate. These studies have offered both support for, and biologically plausible mechanisms to explain, the results from a series of large-scale, long-term prospective observational studies conducted in humans, in which longitudinal increases in weight, abdominal adiposity, and incidence of overweight and obesity have been observed among study participants who reported using diet sodas and other LCS-sweetened beverages daily or more often at baseline. Furthermore, frequent use of diet beverages has been associated prospectively with increased long-term risk and/or hazard of a number of cardiometabolic conditions usually considered to be among the sequelae of obesity: hypertension, metabolic syndrome, diabetes, depression, kidney dysfunction, heart attack, stroke, and even cardiovascular and total mortality. Reverse causality does not appear to explain fully the increased risk observed across all of these studies, the majority of which have included key potential confounders as covariates. These have included body mass index or waist circumference at baseline; total caloric intake and specific macronutrient intake; physical activity; smoking; demographic and other relevant risk factors; and/or family history of disease. Whether non-LCS ingredients in diet beverages might have independently increased the weight gain and/or cardiometabolic risk observed among frequent consumers of LCS-sweetened beverages deserves further exploration. In the meantime, however, there is a striking congruence between results from animal research and a number of large-scale, long-term observational studies in humans, in finding significantly increased weight gain, adiposity, incidence of obesity, cardiometabolic risk, and even total mortality among individuals with chronic, daily exposure to low-calorie sweeteners - and these results are troubling.


Subject(s)
Homeostasis/physiology , Non-Nutritive Sweeteners/adverse effects , Animals , Diet/adverse effects , Humans , Non-Nutritive Sweeteners/administration & dosage , Non-Nutritive Sweeteners/chemistry , Weight Gain/physiology
10.
Eur J Hum Genet ; 23(11): 1544-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25758998

ABSTRACT

Populations and individuals differ in susceptibility to infections because of a number of factors, including host genetic variation. We previously demonstrated that differences in antibody titer, which reflect infection history, are significantly heritable. Here we attempt to identify the genetic factors influencing variation in these serological phenotypes. Blood samples from >1300 Mexican Americans were quantified for IgG antibody level against 12 common infections, selected on the basis of their reported role in cardiovascular disease risk: Chlamydia pneumoniae; Helicobacter pylori; Toxoplasma gondii; cytomegalovirus; herpes simplex I virus; herpes simplex II virus; human herpesvirus 6 (HHV6); human herpesvirus 8 (HHV8); varicella zoster virus; hepatitis A virus (HAV); influenza A virus; and influenza B virus. Pathogen-specific quantitative antibody levels were analyzed, as were three measures of pathogen burden. Genome-wide linkage and joint linkage and association analyses were performed using ~1 million SNPs. Significant linkage (lod scores >3.0) was obtained for HHV6 (on chromosome 7), HHV8 (on chromosome 6), and HAV (on chromosome 13). SNP rs4812712 on chromosome 20 was significantly associated with C. pneumoniae (P=5.3 × 10(-8)). However, no genome-wide significant loci were obtained for the other investigated antibodies. We conclude that it is possible to localize host genetic factors influencing some of these antibody traits, but that further larger-scale investigations will be required to elucidate the genetic mechanisms contributing to variation in antibody levels.


Subject(s)
Antibodies, Bacterial/genetics , Antibodies, Viral/genetics , Immunoglobulin G/immunology , Infections/genetics , Antibodies, Bacterial/blood , Antibodies, Viral/blood , Bacteria/classification , Bacteria/immunology , Bacteria/pathogenicity , Genetic Linkage , Genome-Wide Association Study , Humans , Immunoglobulin G/blood , Infections/blood , Infections/microbiology , Infections/virology , Lod Score , Polymorphism, Single Nucleotide , Risk Factors , Viruses/classification , Viruses/immunology , Viruses/pathogenicity
11.
J Am Geriatr Soc ; 63(4): 708-15, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25780952

ABSTRACT

OBJECTIVES: To examine the relationship between diet soda (DS) intake (DSI) and long-term waist circumference (WC) change (ΔWC) in the biethnic San Antonio Longitudinal Study of Aging (SALSA). DESIGN: Prospective cohort study. SETTING: San Antonio, Texas, neighborhoods. PARTICIPANTS: SALSA examined 749 Mexican-American and European-American individuals aged 65 and older at baseline (baseline, 1992-96); 474 (79.1%) survivors completed follow-up 1 (FU1, 2000-01), 413 (73.4%) completed FU2 (2001-03), and 375 (71.0%) completed FU3 (2003-04). Participants completed a mean of 2.64 follow-up intervals, for 9.4 total follow-up years. MEASUREMENTS: DSI, WC, height, and weight were measured at outset and at the conclusion of each interval: baseline, FU1, FU2, and FU3. RESULTS: Adjusted for initial WC, demographic characteristics, physical activity, diabetes mellitus, and smoking, mean interval ΔWC of DS users (2.11 cm, 95% confidence interval (CI) = 1.45-2.76 cm) was almost triple that of nonusers (0.77 cm, 95% CI = 0.29-1.23 cm) (P < .001). Adjusted interval ΔWCs were 0.77 cm (95% CI = 0.29-1.23 cm) for nonusers, 1.76 cm (95% CI = 0.96-2.57 cm) for occasional users, and 3.04 cm (95% CI = 1.82-4.26 cm) for daily users (P = .002 for trend). This translates to ΔWCs of 0.80 inches for nonusers, 1.83 inches for occasional users, and 3.16 for daily users over the total SALSA follow-up. In subanalyses stratified for selected covariates, ΔWC point estimates were consistently higher in DS users. CONCLUSION: In a striking dose-response relationship, increasing DSI was associated with escalating abdominal obesity, a potential pathway for cardiometabolic risk in this aging population.


Subject(s)
Carbonated Beverages , Waist Circumference , Aged , Body Height , Body Mass Index , Body Weight , Cohort Studies , Ethnicity , Female , Humans , Longitudinal Studies , Male , Mexican Americans , Obesity, Abdominal/etiology , Prospective Studies , Texas
12.
BMC Proc ; 8(Suppl 1): S2, 2014.
Article in English | MEDLINE | ID: mdl-25519314

ABSTRACT

Genetic Analysis Workshop 18 (GAW18) focused on identification of genes and functional variants that influence complex phenotypes in human sequence data. Data for the workshop were donated by the T2D-GENES Consortium and included whole genome sequences for odd-numbered autosomes in 464 key individuals selected from 20 Mexican American families, a dense set of single-nucleotide polymorphisms in 959 individuals in these families, and longitudinal data on systolic and diastolic blood pressure measured at 1-4 examinations over a period of 20 years. Simulated phenotypes were generated based on the real sequence data and pedigree structures. In the design of the simulation model, gene expression measures from the San Antonio Family Heart Study (not distributed as part of the GAW18 data) were used to identify genes whose mRNA levels were correlated with blood pressure. Observed variants within these genes were designated as functional in the GAW18 simulation if they were nonsynonymous and predicted to have deleterious effects on protein function or if they were noncoding and associated with mRNA levels. Two simulated longitudinal phenotypes were modeled to have the same trait distributions as the real systolic and diastolic blood pressure data, with effects of age, sex, and medication use, including a genotype-medication interaction. For each phenotype, more than 1000 sequence variants in more than 200 genes present on the odd-numbered autosomes individually explained less than 0.01-2.78% of phenotypic variance. Cumulatively, variants in the most influential gene explained 7.79% of trait variance. An additional simulated phenotype, Q1, was designed to be correlated among family members but to not be associated with any sequence variants. Two hundred replicates of the phenotypes were simulated, with each including data for 849 individuals.

13.
Hum Genet ; 132(9): 1059-71, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23736306

ABSTRACT

Pediatric metabolic syndrome (MS) and its cardiometabolic components (MSCs) have become increasingly prevalent, yet little is known about the genetics underlying MS risk in children. We examined the prevalence and genetics of MS-related traits among 670 non-diabetic Mexican American (MA) children and adolescents, aged 6-17 years (49 % female), who were participants in the San Antonio Family Assessment of Metabolic Risk Indicators in Youth study. These children are offspring or biological relatives of adult participants from three well-established Mexican American family studies in San Antonio, TX, at increased risk of type 2 diabetes. MS was defined as ≥3 abnormalities among 6 MSC measures: waist circumference, systolic and/or diastolic blood pressure, fasting insulin, triglycerides, HDL-cholesterol, and fasting and/or 2-h OGTT glucose. Genetic analyses of MS, number of MSCs (MSC-N), MS factors, and bivariate MS traits were performed. Overweight/obesity (53 %), pre-diabetes (13 %), acanthosis nigricans (33 %), and MS (19 %) were strikingly prevalent, as were MS components, including abdominal adiposity (32 %) and low HDL-cholesterol (32 %). Factor analysis of MS traits yielded three constructs: adipo-insulin-lipid, blood pressure, and glucose factors, and their factor scores were highly heritable. MS itself exhibited 68 % heritability. MSC-N showed strong positive genetic correlations with obesity, insulin resistance, inflammation, and acanthosis nigricans, and negative genetic correlation with physical fitness. MS trait pairs exhibited strong genetic and/or environmental correlations. These findings highlight the complex genetic architecture of MS/MSCs in MA children, and underscore the need for early screening and intervention to prevent chronic sequelae in this vulnerable pediatric population.


Subject(s)
Genetic Predisposition to Disease/genetics , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , Mexican Americans/genetics , Abdominal Fat/pathology , Acanthosis Nigricans/pathology , Adolescent , Blood Glucose , Blood Pressure , Child , Cholesterol, HDL/blood , Cluster Analysis , Factor Analysis, Statistical , Female , Humans , Male , Metabolic Syndrome/pathology , Molecular Epidemiology , Overweight/pathology , Risk Factors , Texas/epidemiology
14.
J Am Podiatr Med Assoc ; 103(3): 223-32, 2013.
Article in English | MEDLINE | ID: mdl-23697729

ABSTRACT

BACKGROUND: Split-thickness skin grafts can be used for foot wound closure in diabetic and nondiabetic patients. It is unknown whether this procedure is reliable for all diabetic patients, with or without comorbidities of diabetes, including cardiovascular disease, neuropathy, retinopathy, and nephropathy. METHODS: We retrospectively reviewed 203 patients who underwent this procedure to determine significant differences in healing time, postoperative infection, and need for revisional surgery and to create a predictive model to identify diabetic patients who are likely to have a successful outcome. RESULTS: Overall, compared with nondiabetic patients, diabetic patients experienced a significantly higher risk of delayed healing time and postoperative complication/infection and, hence, are more likely to require revisional surgery after undergoing the initial split-thickness skin graft procedure. These differences seemed to be related more to the presence of comorbidities than to diabetic status itself. Diabetic patients with preexisting comorbidities experienced a significantly increased risk of delayed healing time and postoperative infection and a higher need for revisional surgery compared with nondiabetic patients or diabetic patients without comorbidities. However, there were no significant differences in outcome between diabetic patients without comorbidities and nondiabetic patients. CONCLUSIONS: For individuals with diabetes but without exclusionary comorbidities, split-thickness skin grafting may be considered an effective surgical alternative to other prolonged treatment options currently used in this patient population.


Subject(s)
Cardiovascular Diseases/epidemiology , Diabetes Complications/epidemiology , Foot Ulcer/surgery , Skin Transplantation/methods , Surgical Flaps , Wound Healing , Adult , Aged , Comorbidity , Female , Follow-Up Studies , Foot Ulcer/epidemiology , Humans , Male , Middle Aged , Texas/epidemiology , Treatment Outcome
16.
Eur J Hum Genet ; 21(4): 404-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22909773

ABSTRACT

Copy number variation (CNV) remains poorly defined in many populations, including Mexican Americans. We report the discovery and genetic confirmation of copy number variable regions (CNVRs) in subjects of the San Antonio Family Heart and the San Antonio Family Diabetes Gallbladder Studies, both comprised of multigenerational pedigrees of Mexican American descent. In a discovery group of 1677 participants genotyped using Illumina Infinium Beadchips, we identified 2937 unique CNVRs, some with observation frequencies as low as 0.002, using a process that integrates pedigree information with CNV calls made by PennCNV and/or QuantiSNP. Quantitative copy number values had statistically significant (P ≤ 1.792e-5) heritability estimates ranging from 0.139 to 0.863 for 2776 CNVRs. Additionally, 920 CNVRs showed evidence of linkage to their genomic location, providing strong genetic confirmation. Linked CNVRs were enriched in a set of independently identified CNVRs from a second group of 380 samples, confirming that these CNVRs can be used as predefined CNVRs of high confidence. Interestingly, we identified 765 putatively novel variants that do not overlap with the Database of Genomic Variants. This study is the first to use linkage and heritability in multigenerational pedigrees as a confirmation approach for the discovery of CNVRs, and the largest study to date investigating copy number variation on a genome-wide scale in individuals of Mexican American descent. These results provide insight to the structural variation present in Mexican Americans and show the strength of multigenerational pedigrees to elucidate structural variation in the human genome.


Subject(s)
DNA Copy Number Variations , Mexican Americans/genetics , Pedigree , Genetic Linkage , Genome, Human , Heterozygote , Humans
17.
Diabetes ; 61(9): 2385-93, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22617042

ABSTRACT

The objective of this study is to identify and characterize the genetic variants related to the glomerular filtration rate (GFR) linkage on 2q37. Of the positional candidate genes, we selected IRS1 and resequenced its 2-kb promoter region and exons for sequence variants in 32 subjects. A total of 11 single nucleotide polymorphisms (SNPs) were identified. To comprehensively cover the 59-kb-long intron-1, eight additional tagging SNPs were selected from the HapMap. All the 19 SNPs were genotyped by TaqMan Assay in the entire data set (N = 670; 39 families). Association analyses between the SNPs and GFR and type 2 diabetes-related traits were performed using the measured genotype approach. Of the SNPs examined for association, only the Gly(972)Arg variant of IRS1 exhibited a significant association with GFR (P = 0.0006) and serum triglycerides levels (P = 0.003), after accounting for trait-specific covariate effects. Carriers of Arg972 had significantly decreased GFR values. Gly(972)Arg contributed to 26% of the linkage signal on 2q. Expression of IRS1 mutant Arg972 in human mesangial cells significantly reduced the insulin-stimulated phosphorylation of IRS1 and Akt kinase. Taken together, the data provide the first evidence that genetic variation in IRS1 may influence variation in GFR probably through impaired insulin receptor signaling.


Subject(s)
Glomerular Filtration Rate/genetics , Insulin Receptor Substrate Proteins/genetics , Adult , Diabetes Mellitus, Type 2/genetics , Female , Genotype , Humans , Insulin , Linkage Disequilibrium , Male , Mexican Americans/genetics , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/physiology , Signal Transduction/genetics
18.
Obesity (Silver Spring) ; 20(10): 2083-92, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22456541

ABSTRACT

The prevalence of metabolic syndrome (MS) has been rising alarmingly worldwide, including in the United States, but knowledge on specific genetic determinants of MS is very limited. Therefore, we planned to identify the genetic determinants of MS as defined by National Cholesterol Education Program/Adult Treatment Panel III (NCEP/ATPIII) criteria. We performed linkage screen for MS using data from 692 Mexican Americans, who participated in the San Antonio Family Diabetes/Gallbladder Study (SAFDGS). We found strong evidence for linkage of MS on chromosome 7q (LOD = 3.6, empirical P = 6.0 × 10(-5)), between markers D7S2212 and D7S821. In addition, six chromosomal regions exhibited potential evidence for linkage (LOD ≥1.2) with MS. Furthermore, we examined 29 single-nucleotide polymorphisms (SNPs) from the fatty acid translocase (FAT or CD36, 18 SNPs) gene and guanine nucleotide binding protein, α transducing 3 (GNAT3, 11 SNPs) gene, located within the 1-LOD support interval region for their association with MS and its related traits. Several SNPs were associated with MS and its related traits. Remarkably, rs11760281 in GNAT3 and rs1194197 near CD36 exhibited the strongest associations with MS (P = 0.0003, relative risk (RR) = 1.6 and P = 0.004, RR = 1.7, respectively) and several other related traits. These two variants explained ~18% of the MS linkage evidence on chromosome 7q21, and together conferred approximately threefold increase in MS risk (RR = 2.7). In conclusion, our linkage and subsequent association studies implicate a region on chromosome 7q21 to influence MS in Mexican Americans.


Subject(s)
CD36 Antigens/genetics , Chromosomes, Human, Pair 7/genetics , Genetic Linkage , Heterotrimeric GTP-Binding Proteins/genetics , Metabolic Syndrome/genetics , Mexican Americans/genetics , Obesity/genetics , Polymorphism, Single Nucleotide , Adult , Female , Genetic Predisposition to Disease , Genetic Variation , Humans , Lod Score , Male , Metabolic Syndrome/epidemiology , Obesity/epidemiology , Phenotype , Transducin , United States/epidemiology
19.
Am J Perinatol ; 28(9): 703-7, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21660902

ABSTRACT

We sought to identify rates, associated morbidities, and preventable causes of late preterm birth (LPB) in a defined population. We conducted a retrospective cross-sectional analysis using deidentified delivery data for all who delivered in San Antonio/Bexar County, Texas between 2000 and 2008 (N = 259,576). LPB was defined as a live birth from 34(0/7) to 36(6/7) weeks. Variables analyzed included age, race/ethnicity, weight gain, hypertensive disease, diabetes, and preterm labor including premature rupture of membranes. From 2000 to 2006, the LPB rate in San Antonio/Bexar County, Texas, was slightly higher than the national average, 9% versus 8.7% (P < 0.01). From 2000 to 2008, 23,312 LPBs occurred in San Antonio/Bexar County and 53% experienced at least one studied comorbidity. Using logistic regression comparing LPB to term, variables associated with an increased risk of LPB were black race, age < 17, age ≥ 35, gestational hypertension, eclampsia, chronic hypertension, and diabetes. LPB was higher than the national average in our population, and preventable causes of LPB (extremes of age, hypertensive disease, and diabetes) were commonly associated with LPB. We speculate that teenage pregnancy prevention, counseling regarding risks associated with advanced maternal age, and improved management and prevention of hypertensive disease and diabetes should prove beneficial in decreasing the LPB rate.


Subject(s)
Pregnancy Complications/epidemiology , Premature Birth/epidemiology , Premature Birth/etiology , Adolescent , Adult , Black or African American/statistics & numerical data , Cross-Sectional Studies , Diabetes Mellitus/epidemiology , Eclampsia/epidemiology , Female , Humans , Hypertension/complications , Hypertension/epidemiology , Hypertension, Pregnancy-Induced/epidemiology , Logistic Models , Maternal Age , Pregnancy , Premature Birth/ethnology , Retrospective Studies , Risk Factors , Texas/epidemiology , Weight Gain , Young Adult
20.
Ann Hum Genet ; 75(4): 529-38, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21592109

ABSTRACT

We studied 706 participants of the San Antonio Family Diabetes Study (SAFDS) and 586 male samples from the San Antonio Center for Biomarkers of Risk of Prostate Cancer (SABOR) and used 64 ancestry informative markers to compare admixture proportions between both groups. Existence of population substructure was demonstrated by the excess association of unlinked markers. In the SAFDS sample, ancestral proportions were estimated at 50.2 ± 0.6% European, 46.4 ± 0.6% Native American, and 3.1 ± 0.2% West African. For the SABOR sample, the proportions were 58.9 ± 0.7%, 38.2 ± 0.7%, and 2.9 ± 0.2%, respectively. Additionally, in the SAFDS subjects a highly significant negative correlation was found between individual Native American ancestry and skin reflectance (R(2) = 0.07, P= 0.00006). The correlation was stronger in males than in females but clearly showed that ancestry only accounts for a small percentage of the variation in skin color and, conversely, that skin reflectance is not a robust surrogate for genetic admixture. Furthermore, a substantial difference in substructure is present in the two cohorts of Mexican American subjects from the San Antonio area in Texas, which emphasizes that genetic admixture estimates should be accounted for in association studies, even for geographically related subjects.


Subject(s)
Mexican Americans/ethnology , Mexican Americans/genetics , Female , Genetic Linkage , Genetic Markers , Genetics, Population , Humans , Indians, North American/genetics , Male , Pedigree , Skin Pigmentation/genetics , Texas , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL