Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 343
Filter
1.
Adv Exp Med Biol ; 1460: 677-695, 2024.
Article in English | MEDLINE | ID: mdl-39287869

ABSTRACT

Obesity is a worldwide chronic, complex, and progressive disease that poses a challenge for physicians to pursue optimal therapeutic decision making. This chapter focuses on the definition of obesity, based on excessive fat accumulation, and thus underscores the importance of body composition, and the clinical tools used to diagnose it in the context of excess weight, metabolic alteration, and obesity-associated comorbidity development. Additionally, it addresses the indications for surgery that are currently applicable and the description of the different types of patients who could benefit the most from the surgical management of excessive body fat and its associated metabolic derangements and quality of life improvement. Furthermore, it also highlights plausible underlying mechanisms of action for the beneficial effects following bariatric/metabolic surgery.


Subject(s)
Bariatric Surgery , Obesity , Humans , Bariatric Surgery/methods , Obesity/surgery , Obesity/complications , Quality of Life , Treatment Outcome , Patient Selection , Body Composition , Weight Loss , Comorbidity
2.
Article in English | MEDLINE | ID: mdl-39327772

ABSTRACT

OBJECTIVE: Fibronectin type III domain-containing protein 5 (FNDC5) modulates adipocyte metabolism by increasing white and brown adipose tissue (WAT and BAT) browning and activity, respectively. We investigated whether FNDC5 can regulate visceral WAT and BAT adaptive thermogenesis by improving mitochondrial homeostasis in response to cold and obesity. METHODS: Adipose tissue expression of FNDC5 and factors involved in mitochondrial homeostasis were determined in patients with normal weight and obesity (n = 159) and in rats with diet-induced obesity after 1 week of cold exposure (n = 61). The effect of different FNDC5 concentrations on mitochondrial biogenesis, dynamics, and mitophagy was evaluated in vitro in human adipocytes. RESULTS: In human visceral adipocytes, FNDC5/irisin triggered mitochondrial biogenesis (TFAM) and fusion (MFN1, MFN2, and OPA1) while inhibiting peripheral fission (DNM1L and FIS1) and mitophagy (PINK1 and PRKN). Circulating and visceral WAT expression of FNDC5 was decreased in patients and experimental animals with obesity, whereas its receptor, integrin αV, was upregulated. Obesity increased mitochondrial fusion while decreasing mitophagy in visceral WAT from patients and rats. By contrast, in rat BAT, an upregulation of Fndc5 and genes involved in mitochondrial biogenesis and fission was observed. Cold exposure promoted mitochondrial biogenesis and healthy peripheral fission while repressing Fndc5 expression and mitophagy in BAT from rats. CONCLUSIONS: Depot differences in FNDC5 production and mitochondrial adaptations in response to obesity and cold might indicate a self-regulatory mechanism to control thermogenesis in response to energy needs.

3.
J Physiol Biochem ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305371

ABSTRACT

Excess adiposity contributes to the development of colon carcinoma (CC). Interleukin (IL)-1ß is a pro-inflammatory cytokine relevant in obesity-associated chronic inflammation and tumorigenic processes. We herein aimed to study how obesity and CC affects the expression of IL1B, and to determine the impact of IL-1ß on the regulation of metabolic inflammation and gut barrier function in the context of obesity and CC. Samples from 71 volunteers were used in a case-control study and a rat model of diet-induced obesity (DIO). Furthermore, bariatric surgery was used to determine the effect of weight loss on the intestinal gene expression levels of Il1b. To evaluate the effect of IL-1ß and obesity in CC, we treated the adenocarcinoma cell line HT-29 with IL-1ß and the adipocyte-conditioned medium (ACM) from patients with obesity. We showed that obesity (P < 0.05) and CC (P < 0.01) upregulated the transcript levels of IL1B in visceral adipose tissue as well as in the colon from patients with CC (P < 0.01). The increased expression of Il1b in the ileum and colon in DIO rats decreased after weight loss achieved by either sleeve gastrectomy or caloric restriction (both P < 0.05). ACM treatment on HT-29 cells upregulated (P < 0.05) the transcripts of IL1B and CCL2, while reducing (P < 0.05) the expression of the anti-inflammatory ADIPOQ and MUC2 genes. Additionally, IL-1ß upregulated (P < 0.01) the expression of CCL2 and TNF whilst downregulating (P < 0.01) the transcript levels of IL4, ADIPOQ and TJP1 in HT-29 cells. We provide evidence of the important role of IL-1ß in obesity-associated CC by directly promoting inflammation.

4.
Cardiovasc Diabetol ; 23(1): 308, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175063

ABSTRACT

BACKGROUND: Albuminuria is considered an early and sensitive marker of kidney dysfunction, but also an independent cardiovascular risk factor. Considering the possible relationship among metabolic liver disease, cardiovascular disease and chronic kidney disease, we aimed to evaluate the risk of developing albuminuria regarding the presence of epicardial adipose tissue and the steatotic liver disease status. METHODS: A retrospective long-term longitudinal study including 181 patients was carried out. Epicardial adipose tissue and steatotic liver disease were assessed by computed tomography. The presence of albuminuria at follow-up was defined as the outcome. RESULTS: After a median follow up of 11.2 years, steatotic liver disease (HR 3.15; 95% CI, 1.20-8.26; p = 0.02) and excess amount of epicardial adipose tissue (HR 6.12; 95% CI, 1.69-22.19; p = 0.006) were associated with an increased risk of albuminuria after adjustment for visceral adipose tissue, sex, age, weight status, type 2 diabetes, prediabetes, hypertriglyceridemia, hypercholesterolemia, arterial hypertension, and cardiovascular prevention treatment at baseline. The presence of both conditions was associated with a higher risk of developing albuminuria compared to having steatotic liver disease alone (HR 5.91; 95% CI 1.15-30.41, p = 0.033). Compared with the first tertile of visceral adipose tissue, the proportion of subjects with liver steatosis and abnormal epicardial adipose tissue was significantly higher in the second and third tertile. We found a significant correlation between epicardial fat and steatotic liver disease (rho = 0.43 [p < 0.001]). CONCLUSIONS: Identification and management/decrease of excess adiposity must be a target in the primary and secondary prevention of chronic kidney disease development and progression. Visceral adiposity assessment may be an adequate target in the daily clinical setting. Moreover, epicardial adipose tissue and steatotic liver disease assessment may aid in the primary prevention of renal dysfunction.


Subject(s)
Adiposity , Albuminuria , Fatty Liver , Pericardium , Humans , Retrospective Studies , Male , Female , Pericardium/diagnostic imaging , Albuminuria/epidemiology , Albuminuria/diagnosis , Albuminuria/physiopathology , Middle Aged , Risk Factors , Aged , Fatty Liver/epidemiology , Fatty Liver/diagnosis , Fatty Liver/physiopathology , Longitudinal Studies , Time Factors , Adipose Tissue/diagnostic imaging , Adipose Tissue/physiopathology , Adipose Tissue/metabolism , Risk Assessment , Liver/diagnostic imaging , Liver/pathology , Intra-Abdominal Fat/physiopathology , Intra-Abdominal Fat/diagnostic imaging , Adult
5.
Clin Nutr ; 43(9): 2221-2233, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39173437

ABSTRACT

BACKGROUND: The molecular mediators responsible for the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to steatohepatitis (MASH) have not yet been completely disentangled. We sought to analyze whether FNDC4, an hepatokine and adipokine with anti-inflammatory properties, is involved in TNF-α-induced inflammatory cell death in patients with MASLD. METHODS: Plasma FNDC4 (n = 168) and hepatic FNDC4 and inflammatory cell death (n = 65) were measured in samples from patients with severe obesity with available liver biopsy-proven MASLD diagnosis. The effect of FNDC4 on TNF-α-induced pyroptosis, apoptosis and necroptosis (PANoptosis) and mitochondrial dysfunction was studied in vitro using human HepG2 hepatocytes. RESULTS: Compared with individuals with normal liver, patients with type 2 diabetes and MASLD exhibited decreased hepatic FNDC4 mRNA and protein levels, which were related to liver inflammation. An overexpression of TNF-α, its receptor TNF-R1 and factors involved in inflammatory cell death was also found in the liver of these patients. FNDC4-knockdown in HepG2 hepatocytes increased apoptotic cell death, while FNDC4 treatment blunted NLRP3 inflammasome-induced pyroptosis, apoptosis and necroptosis in TNF-α-stimulated hepatocytes. Moreover, FNDC4 improved TNF-α-induced hepatocyte mitochondrial dysfunction by enhancing mitochondrial DNA (mtDNA) copy number and OXPHOS complex subunits I, II, III and V protein expression. Mechanistically, AMP-activated protein kinase α (AMPKα) was required for the FNDC4-mediated inhibition of cell death and increase in mtDNA content. CONCLUSIONS: FNDC4 acts as a hepatocyte survival factor favouring mitochondrial homeostasis and decreasing inflammatory cell death via AMPKα. Collectively, our study identifies FNDC4 as an attractive target to prevent hepatocellular damage in patients with MASLD.


Subject(s)
AMP-Activated Protein Kinases , Hepatocytes , Adult , Female , Humans , Male , Middle Aged , AMP-Activated Protein Kinases/metabolism , Apoptosis/drug effects , Cell Death , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Fatty Liver/metabolism , Fibronectins/metabolism , Hep G2 Cells , Hepatocytes/metabolism , Hepatocytes/drug effects , Inflammation/metabolism , Liver/metabolism , Liver/pathology , Tumor Necrosis Factor-alpha/metabolism
8.
Hepatology ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38761407

ABSTRACT

BACKGROUND AND AIMS: Mitochondrial antiviral signaling protein (MAVS) is a critical regulator that activates the host's innate immunity against RNA viruses, and its signaling pathway has been linked to the secretion of proinflammatory cytokines. However, the actions of MAVS on inflammatory pathways during the development of metabolic dysfunction-associated steatotic liver disease (MASLD) have been little studied. APPROACH AND RESULTS: Liver proteomic analysis of mice with genetically manipulated hepatic p63, a transcription factor that induces liver steatosis, revealed MAVS as a target downstream of p63. MAVS was thus further evaluated in liver samples from patients and in animal models with MASLD. Genetic inhibition of MAVS was performed in hepatocyte cell lines, primary hepatocytes, spheroids, and mice. MAVS expression is induced in the liver of both animal models and people with MASLD as compared with those without liver disease. Using genetic knockdown of MAVS in adult mice ameliorates diet-induced MASLD. In vitro, silencing MAVS blunts oleic and palmitic acid-induced lipid content, while its overexpression increases the lipid load in hepatocytes. Inhibiting hepatic MAVS reduces circulating levels of the proinflammatory cytokine TNFα and the hepatic expression of both TNFα and NFκß. Moreover, the inhibition of ERK abolished the activation of TNFα induced by MAVS. The posttranslational modification O -GlcNAcylation of MAVS is required to activate inflammation and to promote the high lipid content in hepatocytes. CONCLUSIONS: MAVS is involved in the development of steatosis, and its inhibition in previously damaged hepatocytes can ameliorate MASLD.

9.
Eur J Clin Invest ; 54(7): e14218, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38629697

ABSTRACT

Adolphe Quételet, a 19th-century Belgian sociologist and statistician, pioneered the incorporation of statistics into social sciences. He initiated the development of anthropometry since he was interested in identifying the proportions of the 'ideal man'. He devised a ratio between weight and height, originally termed the Quételet Index, and today widely known and used as the body mass index or BMI. In 1835, he demonstrated that a normal curve accommodates the distribution of human traits articulating his reasoning on human variance around the average. Quételet's long-lasting legacy of the establishment of a simple measure to classify people's weight relative to an ideal for their height endures today with minor variations having dramatically influenced public health agendas. While being very useful, the limitations of the BMI are well known. Thus, revisiting the beyond BMI paradigm is a necessity in the era of precision medicine with morphofunctional assessment representing the way forward via incorporation of body composition and functionality appraisal. While healthcare systems were originally designed to address acute illnesses, today's demands require a radical rethinking together with an original reappraisal of our diagnosis and treatment approaches from a multidimensional perspective. Embracing new methodologies is the way forward to advance the field, gain a closer look at the underlying pathophysiology of excess weight, keep the spotlight on improving diagnostic performance and demonstrate its clinical validity. In order to provide every patient with the most accurate diagnosis together with the most appropriate management, a high degree of standardization and personalization is needed.


Subject(s)
Body Mass Index , Obesity , Humans , Obesity/diagnosis , Obesity/therapy , Overweight/therapy , Overweight/diagnosis
10.
Eur J Intern Med ; 124: 54-60, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453570

ABSTRACT

BACKGROUND: The estimation of obesity-associated cardiometabolic risk does not usually take into account body composition or the distribution of adiposity. The aim of the present study was to assess the clinical usefulness of a novel obesity phenotyping system based on the combination of actual body fat percentage (BF%) and waist circumference (WC) according to the cardiometabolic risk estimation. METHODS: A classification matrix combining BF% and WC as measures of both amount and distribution of adiposity establishing nine body phenotypes (3 BF% x 3 WC) was developed. Individuals were grouped in five different cardiometabolic risk phenotypes. We conducted a validation study in a large cohort of White subjects from both genders representing a wide range of ages and adiposity (n = 12,754; 65 % females, aged 18-88 years). RESULTS: The five risk groups using the matrix combination of BF% and WC exhibited a robust linear distribution regarding cardiometabolic risk, estimated by the Metabolic Syndrome Severity Score, showing a continuous increase between groups with significant differences (P < 0.001) among them, as well as in other cardiometabolic risk factors. An additional 24 % of patients at very high risk was detected with the new classification system proposed (P < 0.001) as compared to an equivalent matrix using BMI and WC instead of BF% and WC. CONCLUSIONS: A more detailed phenotyping should be a priority in the diagnosis and management of patients with obesity. Our classification system allows to gradually estimate the cardiometabolic risk according to BF% and WC, thus representing a novel and useful tool for both research and clinical practice.


Subject(s)
Adiposity , Cardiometabolic Risk Factors , Metabolic Syndrome , Obesity , Phenotype , Waist Circumference , Humans , Female , Male , Aged , Middle Aged , Adult , Aged, 80 and over , Adolescent , Young Adult , Metabolic Syndrome/diagnosis , Risk Assessment/methods , Body Mass Index , Cardiovascular Diseases/etiology
11.
J. physiol. biochem ; 80(1): 149-160, Feb. 2024. ilus, graf
Article in English | IBECS | ID: ibc-229947

ABSTRACT

Bariatric surgery has become a recognized and effective procedure for treating obesity and type 2 diabetes (T2D). Our objective was to directly compare the caloric intake-independent effects of sleeve gastrectomy (SG) and single anastomosis duodenoileal bypass with SG (SADI-S) on glucose tolerance in rats with diet-induced obesity (DIO) and to elucidate the differences between bariatric surgery and caloric restriction. A total of 120 adult male Wistar rats with DIO and insulin resistance were randomly assigned to surgical (sham operation, SG, and SADI-S) and dietary (pair-feeding the amount of food eaten by animals undergoing the SG or SADI-S surgeries) interventions. Body weight and food intake were weekly monitored, and 6 weeks after interventions, fasting plasma glucose, oral glucose and insulin tolerance tests, plasma insulin, adiponectin, GIP, GLP-1, and ghrelin levels were determined. The body weight of SADI-S rats was significantly (p < 0.001) lower as compared to the sham-operated, SG, and pair-fed groups. Furthermore, SADI-S rats exhibited decreased whole body fat mass (p < 0.001), lower food efficiency rates (p < 0.001), and increased insulin sensitivity, as well as improved glucose and lipid metabolism compared to that of the SG and pair-fed rats. SADI-S was more effective than SG, or caloric restriction, in improving glycemic control and metabolic profile, with a higher remission of insulin resistance as well as long-term weight loss. (AU)


Subject(s)
Animals , Rats , Obesity , Gastrectomy , Anastomosis, Surgical
12.
J. physiol. biochem ; 80(1): 149-160, Feb. 2024. ilus, graf
Article in English | IBECS | ID: ibc-EMG-573

ABSTRACT

Bariatric surgery has become a recognized and effective procedure for treating obesity and type 2 diabetes (T2D). Our objective was to directly compare the caloric intake-independent effects of sleeve gastrectomy (SG) and single anastomosis duodenoileal bypass with SG (SADI-S) on glucose tolerance in rats with diet-induced obesity (DIO) and to elucidate the differences between bariatric surgery and caloric restriction. A total of 120 adult male Wistar rats with DIO and insulin resistance were randomly assigned to surgical (sham operation, SG, and SADI-S) and dietary (pair-feeding the amount of food eaten by animals undergoing the SG or SADI-S surgeries) interventions. Body weight and food intake were weekly monitored, and 6 weeks after interventions, fasting plasma glucose, oral glucose and insulin tolerance tests, plasma insulin, adiponectin, GIP, GLP-1, and ghrelin levels were determined. The body weight of SADI-S rats was significantly (p < 0.001) lower as compared to the sham-operated, SG, and pair-fed groups. Furthermore, SADI-S rats exhibited decreased whole body fat mass (p < 0.001), lower food efficiency rates (p < 0.001), and increased insulin sensitivity, as well as improved glucose and lipid metabolism compared to that of the SG and pair-fed rats. SADI-S was more effective than SG, or caloric restriction, in improving glycemic control and metabolic profile, with a higher remission of insulin resistance as well as long-term weight loss. (AU)


Subject(s)
Animals , Rats , Obesity , Gastrectomy , Anastomosis, Surgical
14.
Cell Mol Life Sci ; 81(1): 77, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315242

ABSTRACT

BACKGROUND: Obesity-associated dysfunctional intestinal permeability contributes to systemic chronic inflammation leading to the development of metabolic diseases. The inflammasomes constitute essential components in the regulation of intestinal homeostasis. We aimed to determine the impact of the inflammasomes in the regulation of gut barrier dysfunction and metabolic inflammation in the context of obesity and type 2 diabetes (T2D). METHODS: Blood samples obtained from 80 volunteers (n = 20 normal weight, n = 21 OB without T2D, n = 39 OB with T2D) and a subgroup of jejunum samples were used in a case-control study. Circulating levels of intestinal damage markers and expression levels of inflammasomes as well as their main effectors (IL-1ß and IL-18) and key inflammation-related genes were analyzed. The impact of inflammation-related factors, different metabolites and Akkermansia muciniphila in the regulation of inflammasomes and intestinal integrity genes was evaluated. The effect of blocking NLRP6 by using siRNA in inflammation was also studied. RESULTS: Increased circulating levels (P < 0.01) of the intestinal damage markers endotoxin, LBP, and zonulin in patients with obesity decreased (P < 0.05) after weight loss. Patients with obesity and T2D exhibited decreased (P < 0.05) jejunum gene expression levels of NLRP6 and its main effector IL18 together with increased (P < 0.05) mRNA levels of inflammatory markers. We further showed that while NLRP6 was primarily localized in goblet cells, NLRP3 was localized in the intestinal epithelial cells. Additionally, decreased (P < 0.05) mRNA levels of Nlrp1, Nlrp3 and Nlrp6 in the small intestinal tract obtained from rats with diet-induced obesity were found. NLRP6 expression was regulated by taurine, parthenolide and A. muciniphila in the human enterocyte cell line CCL-241. Finally, a significant decrease (P < 0.01) in the expression and release of MUC2 after the knockdown of NLRP6 was observed. CONCLUSIONS: The increased levels of intestinal damage markers together with the downregulation of NLRP6 and IL18 in the jejunum in obesity-associated T2D suggest a defective inflammasome sensing, driving to an impaired epithelial intestinal barrier that may regulate the progression of multiple obesity-associated comorbidities.


Subject(s)
Diabetes Mellitus, Type 2 , Inflammasomes , Humans , Rats , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Intestinal Barrier Function , Case-Control Studies , Inflammation , Obesity/complications , RNA, Messenger/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Receptors, Angiotensin/metabolism , Receptors, Vasopressin/metabolism
15.
J Biomed Sci ; 31(1): 2, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183057

ABSTRACT

BACKGROUND: Excessive lipid accumulation in the adipose tissue in obesity alters the endocrine and energy storage functions of adipocytes. Adipocyte lipid droplets represent key organelles coordinating lipid storage and mobilization in these cells. Recently, we identified the small GTPase, Rab34, in the lipid droplet proteome of adipocytes. Herein, we have characterized the distribution, intracellular transport, and potential contribution of this GTPase to adipocyte physiology and its regulation in obesity. METHODS: 3T3-L1 and human primary preadipocytes were differentiated in vitro and Rab34 distribution and trafficking were analyzed using markers of cellular compartments. 3T3-L1 adipocytes were transfected with expression vectors and/or Rab34 siRNA and assessed for secretory activity, lipid accumulation and expression of proteins regulating lipid metabolism. Proteomic and protein interaction analyses were employed for the identification of the Rab34 interactome. These studies were combined with functional analysis to unveil the role played by the GTPase in adipocytes, with a focus on the actions conveyed by Rab34 interacting proteins. Finally, Rab34 regulation in response to obesity was also evaluated. RESULTS: Our results show that Rab34 localizes at the Golgi apparatus in preadipocytes. During lipid droplet biogenesis, Rab34 translocates from the Golgi to endoplasmic reticulum-related compartments and then reaches the surface of adipocyte lipid droplets. Rab34 exerts distinct functions related to its intracellular location. Thus, at the Golgi, Rab34 regulates cisternae integrity as well as adiponectin trafficking and oligomerization. At the lipid droplets, this GTPase controls lipid accumulation and lipolysis through its interaction with the E1-ubiquitin ligase, UBA1, which induces the ubiquitination and proteasomal degradation of the fatty acid transporter and member of Rab34 interactome, FABP5. Finally, Rab34 levels in the adipose tissue and adipocytes are regulated in response to obesity and related pathogenic insults (i.e., fibrosis). CONCLUSIONS: Rab34 plays relevant roles during adipocyte differentiation, including from the regulation of the oligomerization (i.e., biological activity) and secretion of a major adipokine with insulin-sensitizing actions, adiponectin, to lipid storage and mobilization from lipid droplets. Rab34 dysregulation in obesity may contribute to the altered adipokine secretion and lipid metabolism that characterize adipocyte dysfunction in conditions of excess adiposity.


Subject(s)
Adiponectin , Proteomics , Humans , Adipocytes , Adipokines , GTP Phosphohydrolases , Obesity , Lipids , Fatty Acid-Binding Proteins
16.
J Physiol Biochem ; 80(1): 149-160, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37935948

ABSTRACT

Bariatric surgery has become a recognized and effective procedure for treating obesity and type 2 diabetes (T2D). Our objective was to directly compare the caloric intake-independent effects of sleeve gastrectomy (SG) and single anastomosis duodenoileal bypass with SG (SADI-S) on glucose tolerance in rats with diet-induced obesity (DIO) and to elucidate the differences between bariatric surgery and caloric restriction.A total of 120 adult male Wistar rats with DIO and insulin resistance were randomly assigned to surgical (sham operation, SG, and SADI-S) and dietary (pair-feeding the amount of food eaten by animals undergoing the SG or SADI-S surgeries) interventions. Body weight and food intake were weekly monitored, and 6 weeks after interventions, fasting plasma glucose, oral glucose and insulin tolerance tests, plasma insulin, adiponectin, GIP, GLP-1, and ghrelin levels were determined.The body weight of SADI-S rats was significantly (p < 0.001) lower as compared to the sham-operated, SG, and pair-fed groups. Furthermore, SADI-S rats exhibited decreased whole body fat mass (p < 0.001), lower food efficiency rates (p < 0.001), and increased insulin sensitivity, as well as improved glucose and lipid metabolism compared to that of the SG and pair-fed rats.SADI-S was more effective than SG, or caloric restriction, in improving glycemic control and metabolic profile, with a higher remission of insulin resistance as well as long-term weight loss.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Obesity, Morbid , Rats , Male , Animals , Rats, Wistar , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/surgery , Glycemic Control , Obesity/etiology , Obesity/surgery , Obesity/metabolism , Anastomosis, Surgical/methods , Gastrectomy/methods , Insulin , Diet , Glucose
17.
Eur J Intern Med ; 119: 13-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37802720

ABSTRACT

The prevalence of overweight, obesity, type 2 diabetes, metabolic syndrome and steatotic liver disease is rapidly increasing worldwide with a huge economic burden in terms of morbidity and mortality. Several genetic and environmental factors are involved in the onset and development of metabolic disorders and related complications. A critical role also exists for the gut microbiota, a complex polymicrobial ecology at the interface of the internal and external environment. The gut microbiota contributes to food digestion and transformation, caloric intake, and immune response of the host, keeping the homeostatic control in health. Mechanisms of disease include enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability and translocation of bacterial metabolites which activate a chronic low-grade systemic inflammation and insulin resistance, as precursors of tangible metabolic disorders involving glucose and lipid homeostasis. The ultimate causative role of gut microbiota in this respect remains to be elucidated, as well as the therapeutic value of manipulating the gut microbiota by diet, pre- and pro- synbiotics, or fecal microbial transplantation.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Gastrointestinal Microbiome , Metabolic Syndrome , Humans , Obesity/therapy , Obesity/microbiology , Metabolic Syndrome/therapy , Inflammation
19.
J. physiol. biochem ; 79(4): 833-849, nov. 2023.
Article in English | IBECS | ID: ibc-227556

ABSTRACT

The underlying mechanisms for the development and progression of nonalcoholic fatty liver disease (NAFLD) are complex and multifactorial. Within the last years, experimental and clinical evidences support the role of ghrelin in the development of NAFLD. Ghrelin is a gut hormone that plays a major role in the short-term regulation of appetite and long-term regulation of adiposity. The liver constitutes a target for ghrelin, where this gut-derived peptide triggers intracellular pathways regulating lipid metabolism, inflammation, and fibrosis. Interestingly, circulating ghrelin levels are altered in patients with metabolic diseases, such as obesity, type 2 diabetes, and metabolic syndrome, which, in turn, are well-known risk factors for the pathogenesis of NAFLD. This review summarizes the molecular and cellular mechanisms involved in the hepatoprotective action of ghrelin, including the reduction of hepatocyte lipotoxicity via autophagy and fatty acid β-oxidation, mitochondrial dysfunction, endoplasmic reticulum stress and programmed cell death, the reversibility of the proinflammatory phenotype in Kupffer cells, and the inactivation of hepatic stellate cells. Together, the metabolic and inflammatory pathways regulated by ghrelin in the liver support its potential as a therapeutic target to prevent NAFLD in patients with metabolic disorders. (AU)


Subject(s)
Humans , Diabetes Mellitus, Type 2/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Ghrelin , Hepatocytes/metabolism , Liver/metabolism , Obesity/metabolism
20.
Nutrients ; 15(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38004218

ABSTRACT

Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (p < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (>-0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (>0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (p < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors.


Subject(s)
Cardiometabolic Risk Factors , Diet , Male , Humans , Female , Diet/adverse effects , Obesity/epidemiology , Obesity/etiology , Feeding Behavior , Weight Gain , Vegetables , Diet, Fat-Restricted , Alcohol Drinking/epidemiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL