Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 12: 660793, 2021.
Article in English | MEDLINE | ID: mdl-34149616

ABSTRACT

Metformin is an antidiabetic drug used for the treatment of diabetes and metabolic diseases. Imbalance in the autonomic nervous system (ANS) is associated with metabolic diseases. This study aimed to test whether metformin could improve ANS function in obese rats. Obesity was induced by neonatal treatment with monosodium L-glutamate (MSG). During 21-100 days of age, MSG-rats were treated with metformin 250 mg/kg body weight/day or saline solution. Rats were euthanized to evaluate biometric and biochemical parameters. ANS electrical activity was recorded and analyzed. Metformin normalized the hypervagal response in MSG-rats. Glucose-stimulated insulin secretion in isolated pancreatic islets increased in MSG-rats, while the cholinergic response decreased. Metformin treatment normalized the cholinergic response, which involved mostly the M3 muscarinic acetylcholine receptor (M3 mAChR) in pancreatic beta-cells. Protein expression of M3 mAChRs increased in MSG-obesity rats, while metformin treatment decreased the protein expression by 25%. In conclusion, chronic metformin treatment was effective in normalizing ANS activity and alleviating obesity in MSG-rats.


Subject(s)
Autonomic Nervous System/drug effects , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Obesity/drug therapy , Acetylcholine/pharmacology , Animals , Glucose/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Neostigmine/pharmacology , Obesity/chemically induced , Obesity/metabolism , Obesity/physiopathology , Rats, Wistar , Receptor, Muscarinic M3/metabolism , Sodium Glutamate , Vagus Nerve/drug effects , Vagus Nerve/physiology
2.
J Endocrinol ; 250(3): 81-91, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34101615

ABSTRACT

We tested whether chronic supplementation with soy isoflavones could modulate insulin secretion levels and subsequent recovery of pancreatic islet function as well as prevent metabolic dysfunction induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SL, three pups/dam) and normal litters (NL, nine pups/dam) were used as models of early overfeeding and normal feeding, respectively. At 30 to 90 days old, animals in the SL and NL groups received either soy isoflavones extract (ISO) or water (W) gavage serving as controls. At 90 days old, body weight, visceral fat deposits, glycemia, insulinemia were evaluated. Glucose-insulin homeostasis and pancreatic-islet insulinotropic response were also determined. The early life overnutrition induced by small litter displayed metabolic dysfunction, glucose, and insulin homeostasis disruption in adult rats. However, adult SL rats treated with soy isoflavones showed improvement in glucose tolerance, insulin sensitivity, insulinemia, fat tissue accretion, and body weight gain, compared with the SL-W group. Pancreatic-islet response to cholinergic, adrenergic, and glucose stimuli was improved in both isoflavone-treated groups. In addition, different isoflavone concentrations increased glucose-stimulated insulin secretion in islets of all groups with higher magnitude in both NL and SL isoflavone-treated groups. These results indicate that long-term treatment with soy isoflavones inhibits early overfeeding-induced metabolic dysfunction in adult rats and modulated the process of insulin secretion in pancreatic islets.


Subject(s)
Islets of Langerhans/drug effects , Isoflavones/pharmacology , Metabolic Diseases/prevention & control , Animals , Animals, Newborn , Blood Glucose/metabolism , Body Weight/drug effects , Disease Models, Animal , Female , Insulin/metabolism , Insulin Resistance , Insulin Secretion/drug effects , Islets of Langerhans/physiology , Isoflavones/isolation & purification , Male , Metabolic Diseases/etiology , Metabolic Diseases/pathology , Overnutrition/complications , Overnutrition/metabolism , Overnutrition/pathology , Pregnancy , Rats , Rats, Wistar , Sex Factors , Glycine max/chemistry
3.
Exp Physiol ; 105(12): 2051-2060, 2020 12.
Article in English | MEDLINE | ID: mdl-33074581

ABSTRACT

NEW FINDINGS: What is the central question of this study? Studies reported the efficacy of metformin as a promising drug for preventing or treating of metabolic diseases. Nutrient stresses during neonatal life increase long-term risk for cardiometabolic diseases. Can early metformin treatment prevent the malprogramming effects of early overfeeding? What is the main finding and its importance? Neonatal metformin treatment prevented early overfeeding-induced metabolic dysfunction in adult rats. Inhibition of early hyperinsulinaemia and adult hyperphagia might be associated with decreased metabolic disease risk in these animals. Therefore, interventions during infant development offer a key area for future research to identify potential strategies to prevent the long-term metabolic diseases. We suggest that metformin is a potential tool for intervention. ABSTRACT: Given the need for studies investigating the possible long-term effects of metformin use at crucial stages of development, and taking into account the concept of metabolic programming, the present work aimed to evaluate whether early metformin treatment might program rats to resist the development of adult metabolic dysfunctions caused by overnutrition during the neonatal suckling phase. Wistar rats raised in small litters (SLs, three pups per dam) and normal litters (NLs, nine pups per dam) were used as models of early overfeeding and normal feeding, respectively. During the first 12 days of suckling, animals from SL and NL groups received metformin, whereas the controls received saline injections. Food intake and body weight were monitored from weaning until 90 days of age, when biometric and biochemical parameters were assessed. The metformin treatment decreased insulin concentrations in pups from SL groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, body weight gain, white fat pad stores and food intake. Low-glucose insulinotrophic effects were observed in pancreatic islets from both NL and SL groups. These results indicate that early postnatal treatment with metformin inhibits early overfeeding-induced metabolic dysfunctions in adult rats.


Subject(s)
Islets of Langerhans/drug effects , Metabolic Diseases/prevention & control , Metformin/pharmacology , Overnutrition/drug therapy , Adipose Tissue, White/metabolism , Animals , Animals, Newborn , Blood Glucose/drug effects , Body Composition/drug effects , Body Weight/drug effects , Female , Insulin/metabolism , Insulin Resistance/physiology , Islets of Langerhans/metabolism , Leptin/metabolism , Male , Metabolic Diseases/metabolism , Obesity/drug therapy , Obesity/metabolism , Overnutrition/metabolism , Rats , Rats, Wistar , Weight Gain/drug effects
4.
Nutr Neurosci ; 23(6): 432-443, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30187832

ABSTRACT

Objectives: We aimed to assess the effects of a maternal protein-caloric restriction diet during late pregnancy on the metabolism of rat offspring fed a high-fat diet (HFD) during adulthood.Methods: During late pregnancy, rat dams received either a low-protein (4%; LP group) or normoprotein (23%; NP group) diet. After weaning, the offspring were fed a standard diet (Control; C). Male offspring (60 days old) from both groups were then fed either the C diet or HFD until they were 90 days old. The adult offspring and maternal metabolic parameters and autonomic nervous system (ANS) were then evaluated.Results: Dams exhibited low body weight gain and food intake during the LP diet consumption. At lactation, these dams showed high body weight gain, hypoinsulinemia and hyperglycemia. The maternal LP diet resulted in low body weights for the pups. There were also no differences in the metabolic parameters between the adult LP offspring that were fed the C diet and the NP group. Adults of both groups that were fed the HFD developed obesity associated with altered insulin/ glucose homeostasis and altered ANS activity; however, the magnitudes of these parameters were higher in the LP group than in the NP group.Conclusions: Maternal protein malnutrition during the last third of pregnancy malprograms the metabolism of rat offspring, resulting in increased vulnerability to HFD-induced obesity, and the correlated metabolic impairment might be associated with lower sympathetic nerve activity in adulthood.


Subject(s)
Malnutrition/metabolism , Maternal Nutritional Physiological Phenomena , Pregnancy Complications/metabolism , Sympathetic Nervous System/metabolism , Animals , Diet, High-Fat/adverse effects , Female , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats, Wistar
5.
Drug Chem Toxicol ; 42(4): 394-402, 2019 Jul.
Article in English | MEDLINE | ID: mdl-29681187

ABSTRACT

Bendamustine, an anticancer drug with alkylating properties, is widely used to treat hematological malignancies. Since the nitrogen mustard family alkylators induce DNA damages and have been associated with an elevated risk of second malignancy, current study evaluates the cytotoxic, mutagenic, and recombinogenic effects of bendamustine by using, respectively the mitotic index assay, the in vitro mammalian cell micronucleus test (Mnvit) and the chromosome aberration (CA) test in human peripheral lymphocytes, and the in vivo homozygotization assay in Aspergillus nidulans, which detects the loss of heterozygosity (LOH) due to somatic recombination. Bendamustine (6.0 µg/ml, 9.0 µg/ml, and 12.0 µg/ml) induced a statistically significant concentration-related increase in the frequencies of micronuclei and a significant reduction in the cytokinesis block proliferation index (CBPI) rates when compared to negative control. In the CA test, bendamustine significantly increased the frequencies of structural aberrations at the three tested concentrations when compared to the negative control. Aspergillus nidulans diploids, obtained after bendamustine treatment (6.0 µg/ml, 12.0 µg/ml, and 24.0 µg/ml), produced, after haploidization, homozygotization index (HI) rates higher than 2.0 and significantly different from the negative control. Since bendamustine showed genotoxic effects in all tested concentrations, two of them corresponding to the peak plasma concentrations observed in cancer patients treated with bendamustine, data provided in the current research work may be useful to identify the most appropriate dosage regimen to achieve the efficacy and safety of this anticancer medication.


Subject(s)
Antineoplastic Agents, Alkylating/toxicity , Aspergillus nidulans/drug effects , Bendamustine Hydrochloride/toxicity , Chromosome Aberrations/chemically induced , Loss of Heterozygosity/drug effects , Lymphocytes/drug effects , Adolescent , Adult , Aspergillus nidulans/genetics , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Lymphocytes/pathology , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Young Adult
6.
J Endocrinol ; 237(3): 243-254, 2018 06.
Article in English | MEDLINE | ID: mdl-29599416

ABSTRACT

We examined the long-term effects of protein restriction during puberty on the function of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes in male rats. Male Wistar rats from the age of 30 to 60 days were fed a low-protein diet (4%, LP). A normal-protein diet (20.5%) was reintroduced to rats from the age of 60 to 120 days. Control rats were fed a normal-protein diet throughout life (NP). Rats of 60 or 120 days old were killed. Food consumption, body weight, visceral fat deposits, lipid profile, glycemia, insulinemia, corticosteronemia, adrenocorticotropic hormone (ACTH), testosteronemia and leptinemia were evaluated. Glucose-insulin homeostasis, pancreatic-islet insulinotropic response, testosterone production and hypothalamic protein expression of the androgen receptor (AR), glucocorticoid receptor (GR) and leptin signaling pathway were also determined. LP rats were hypophagic, leaner, hypoglycemic, hypoinsulinemic and hypoleptinemic at the age of 60 days (P < 0.05). These rats exhibited hyperactivity of the HPA axis, hypoactivity of the HPG axis and a weak insulinotropic response (P < 0.01). LP rats at the age of 120 days were hyperphagic and exhibited higher visceral fat accumulation, hyperleptinemia and dyslipidemia; lower blood ACTH, testosterone and testosterone release; and reduced hypothalamic expression of AR, GR and SOCS3, with a higher pSTAT3/STAT3 ratio (P < 0.05). Glucose-insulin homeostasis was disrupted and associated with hyperglycemia, hyperinsulinemia and increased insulinotropic response of the pancreatic islets. The cholinergic and glucose pancreatic-islet responses were small in 60-day-old LP rats but increased in 120-day-old LP rats. The hyperactivity of the HPA axis and the suppression of the HPG axis caused by protein restriction at puberty contributed to energy and metabolic disorders as long-term consequences.


Subject(s)
Diet, Protein-Restricted/adverse effects , Energy Metabolism , Sexual Maturation , Testosterone/metabolism , Animals , Cells, Cultured , Dietary Proteins/pharmacology , Energy Metabolism/drug effects , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Male , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Rats , Rats, Wistar , Sexual Maturation/drug effects
7.
Eur J Nutr ; 57(2): 477-486, 2018 Mar.
Article in English | MEDLINE | ID: mdl-27752755

ABSTRACT

PURPOSE: Environmental and nutritional disorders during perinatal period cause metabolic dysfunction in the progeny and impair human health. Advanced glycation end products (AGEs) are primarily produced during metabolism of excess blood glucose, which is observed in diabetes. Methylglyoxal (MG) is a precursor for the generation of endogenous AGEs, which disturbs the metabolism. This work aimed to investigate whether the maternal MG treatment during lactation programs the progeny to metabolic dysfunction later in life. METHODS: Female Wistar rats were divided into two groups: control group (C) treated with saline and MG group treated with MG (60 mg/kg/day) by gavage throughout the lactation period. Both mothers and offspring were fed a standard chow. At weaning, breast milk composition was analyzed and mothers euthanized for blood and tissue sample collections. At 90 days of age, offspring were submitted to glucose tolerance test (ivGTT) and euthanized for blood and tissue samples collection. RESULTS: MG mothers showed increase in glucose and fructosamine levels; however, they showed low insulin levels and failure in ß-cell function (p < 0.05). MG mothers also showed dyslipidemia (p < 0.05). Moreover, breast milk had elevated levels of glucose, triglycerides, cholesterol and fructosamine and low insulin (p < 0.05). Interestingly, MG offspring had increased body weight and adipose tissue at adulthood, and they also showed glucose intolerance and failure in ß-cell function (p < 0.05). Besides, MG offspring showed dyslipidemia (p < 0.05) increasing cardiovascular diseases risk. CONCLUSIONS: Maternal MG treatment negatively affects the male rat offspring, leading to type 2 diabetes and dyslipidemia in later life, possibly by changes in breast milk composition.


Subject(s)
Diabetes Mellitus, Type 2/chemically induced , Dyslipidemias/chemically induced , Environmental Pollutants/toxicity , Lactation/drug effects , Maternal Exposure/adverse effects , Obesity/chemically induced , Pyruvaldehyde/toxicity , Adiposity/drug effects , Administration, Oral , Animals , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Dyslipidemias/blood , Dyslipidemias/metabolism , Dyslipidemias/pathology , Environmental Pollutants/administration & dosage , Environmental Pollutants/analysis , Female , Insulin/analysis , Insulin/blood , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Lactation/metabolism , Male , Milk/chemistry , Obesity/blood , Obesity/metabolism , Obesity/pathology , Pregnancy , Pyruvaldehyde/administration & dosage , Pyruvaldehyde/analysis , Random Allocation , Rats, Sprague-Dawley , Toxicokinetics , Weight Gain/drug effects
8.
Toxicology ; 372: 12-21, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27765684

ABSTRACT

Acephate has been used extensively as an insecticide in agriculture. Its downstream sequelae are associated with hyperglycemia, lipid metabolism dysfunction, DNA damage, and cancer, which are rapidly growing epidemics and which lead to increased morbidity and mortality rates and soaring health-care costs. Developing interventions will require a comprehensive understanding of which excess insecticides during perinatal life can cause insulin resistance and type 2 diabetes. A Wistar rat animal model suggests that acephate exposure during pregnancy and lactation causes alterations in maternal glucose metabolism and programs the offspring to be susceptible to type 2 diabetes at adulthood. Therapeutic approaches based on preventive actions to food contaminated with insecticides during pregnancy and lactation could prevent new cases of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/chemically induced , Insecticides/toxicity , Organothiophosphorus Compounds/toxicity , Phosphoramides/toxicity , Animals , Animals, Newborn , Diabetes Mellitus, Type 2/pathology , Female , Humans , Lactation , Pregnancy , Rats , Rats, Wistar
9.
Sci Rep ; 6: 30745, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27561682

ABSTRACT

We tested whether treatment with a cholinergic antagonist could reduce insulin levels in early postnatal life and attenuate metabolic dysfunctions induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SLs, 3 pups/dam) and normal litters (NLs, 9 pups/dam) were used in models of early overfeeding and normal feeding, respectively. During the first 12 days of lactation, animals in the SL and NL groups received scopolamine butylbromide (B), while the controls received saline (S) injections. The drug treatment decreased insulin levels in pups from both groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, vagus nerve activity, fat tissue accretion, insulinemia, leptinemia, body weight gain and food intake. Low glucose and cholinergic insulinotropic effects were observed in pancreatic islets from both groups. Low protein expression was observed for the muscarinic M3 acetylcholine receptor subtype (M3mAChR), although M2mAChR subtype expression was increased in SL-B islets. In addition, beta-cell density was reduced in drug-treated rats. These results indicate that early postnatal scopolamine butylbromide treatment inhibits early overfeeding-induced metabolic dysfunctions in adult rats, which might be caused by insulin decreases during lactation, associated with reduced parasympathetic activity and expression of M3mAChR in pancreatic islets.


Subject(s)
Butylscopolammonium Bromide/pharmacology , Metabolic Diseases , Obesity , Animals , Animals, Newborn , Disease Models, Animal , Female , Male , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Metabolic Diseases/prevention & control , Obesity/metabolism , Obesity/pathology , Obesity/prevention & control , Rats , Rats, Wistar
10.
Endocrinology ; 157(5): 1799-812, 2016 05.
Article in English | MEDLINE | ID: mdl-27007071

ABSTRACT

Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol.


Subject(s)
Diet, Protein-Restricted , Insulin Resistance/physiology , Maternal Nutritional Physiological Phenomena/physiology , Metabolic Syndrome/etiology , Prenatal Exposure Delayed Effects/metabolism , Adrenal Glands/metabolism , Adrenal Glands/pathology , Animals , Blood Glucose/metabolism , Body Weight/physiology , Cholesterol/blood , Eating/physiology , Female , Insulin/blood , Leptin/blood , Male , Metabolic Syndrome/metabolism , Pancreas/metabolism , Pancreas/pathology , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Wistar
11.
Mutagenesis ; 31(4): 417-24, 2016 07.
Article in English | MEDLINE | ID: mdl-26825076

ABSTRACT

Pioglitazone (PTZ) is an oral antidiabetic agent whose anti-cancer properties have been described recently. Since PTZ increases the production of reactive oxygen species in mammalian cells, the aim of current study was to evaluate the cytotoxic, mutagenic and recombinogenic effects of PTZ using respectively the in vitro mitotic index assay and the in vitro mammalian cell micronucleus test in human peripheral lymphocytes, and the in vivo homozygotization assay in Aspergillus nidulans, which detects the loss of heterozygosity due to somatic recombination. Although the lowest PTZ concentrations (4-36 µM) did not show any significant rise in the micronucleus production, the higher PTZ concentration (108 µM) produced a statistically higher number of micronuclei than the negative control and significantly altered the cell-proliferation kinetics, demonstrating the mutagenic and antiproliferative effects of PTZ, respectively. The recombinogenic activity of PTZ, demonstrated here for the first time, was observed at the highest tested concentration (400 µM) through the homozygotization index rates significantly different from the negative control. Taken together, our results show that PTZ is genotoxic at a concentration higher than the therapeutic plasma concentration. This PTZ genotoxicity may be a potential benefit to its previously described antitumour activity.


Subject(s)
DNA Damage , Lymphocytes/drug effects , Micronuclei, Chromosome-Defective/chemically induced , PPAR gamma/agonists , Thiazolidinediones/adverse effects , Aspergillus nidulans/drug effects , Aspergillus nidulans/genetics , Cells, Cultured , DNA/drug effects , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/toxicity , Loss of Heterozygosity , Mutagenicity Tests , Oxidative Stress/drug effects , Pioglitazone , Thiazolidinediones/therapeutic use , Thiazolidinediones/toxicity
12.
Int J Endocrinol ; 2016: 9242319, 2016.
Article in English | MEDLINE | ID: mdl-28050167

ABSTRACT

Essential polyunsaturated fatty acids (PUFAs) prevent cardiometabolic diseases. We aimed to study whether a diet supplemented with a mixture of n-6/n-3 PUFAs, during perinatal life, attenuates outcomes of long-term metabolic dysfunction in prediabetic and obese mice. Seventy-day-old virgin female mice were mated. From the conception day, dams were fed a diet supplemented with sunflower oil and flaxseed powder (containing an n-6/n-3 PUFAs ratio of 1.2 : 1.0) throughout pregnancy and lactation, while control dams received a commercial diet. Newborn mice were treated with monosodium L-glutamate (MSG, 4 mg g-1 body weight per day) for the first 5 days of age. A batch of weaned pups was sacrificed to quantify the brain and pancreas total lipids; another batch were fed a commercial diet until 90 days of age, where glucose homeostasis and glucose-induced insulin secretion (GIIS) as well as retroperitoneal fat and Lee index were assessed. MSG-treated mice developed obesity, glucose intolerance, insulin resistance, pancreatic islet dysfunction, and higher fat stores. Maternal flaxseed diet-supplementation decreased n-6/n-3 PUFAs ratio in the brain and pancreas and blocked glucose intolerance, insulin resistance, GIIS impairment, and obesity development. The n-6/n-3 essential PUFAs in a ratio of 1.2 : 1.0 supplemented in maternal diet during pregnancy and lactation prevent metabolic dysfunction in MSG-obesity model.

13.
PLoS One ; 10(3): e0120675, 2015.
Article in English | MEDLINE | ID: mdl-25803314

ABSTRACT

Glibenclamide is an oral hypoglycemic drug commonly prescribed for the treatment of type 2 diabetes mellitus, whose anti-tumor activity has been recently described in several human cancer cells. The mutagenic potential of such an antidiabetic drug and its recombinogenic activity in eukaryotic cells were evaluated, the latter for the first time. The mutagenic potential of glibenclamide in therapeutically plasma (0.6 µM) and higher concentrations (10 µM, 100 µM, 240 µM and 480 µM) was assessed by the in vitro mammalian cell micronucleus test in human lymphocytes. Since the loss of heterozygosity arising from allelic recombination is an important biologically significant consequence of oxidative damage, the glibenclamide recombinogenic activity at 1 µM, 10 µM and 100 µM concentrations was evaluated by the in vivo homozygotization assay. Glibenclamide failed to alter the frequency of micronuclei between 0.6 µM and 480 µM concentrations and the cytokinesis block proliferation index between 0.6 µM and 240 µM concentrations. On the other hand, glibenclamide changed the cell-proliferation kinetics when used at 480 µM. In the homozygotization assay, the homozygotization indices for the analyzed markers were lower than 2.0 and demonstrated the lack of recombinogenic activity of glibenclamide. Data in the current study demonstrate that glibenclamide, in current experimental conditions, is devoid of significant genotoxic effects. This fact encourages further investigations on the use of this antidiabetic agent as a chemotherapeutic drug.


Subject(s)
Glyburide/toxicity , Hypoglycemic Agents/toxicity , Lymphocytes/drug effects , Mutagens/toxicity , Adult , Cell Proliferation/drug effects , Cells, Cultured , Diabetes Mellitus, Type 2/drug therapy , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , Micronucleus Tests , Young Adult
14.
Cell Physiol Biochem ; 34(6): 1920-32, 2014.
Article in English | MEDLINE | ID: mdl-25500480

ABSTRACT

BACKGROUND/AIMS: The objective of the current work was to test the effect of metformin on the tumor growth in rats with metabolic syndrome. METHODS: We obtained pre-diabetic hyperinsulinemic rats by neonatal treatment with monosodium L-glutamate (MSG), which were chronically treated every day, from weaning to 100 day old, with dose of metformin (250 mg/kg body weight). After the end of metformin treatment, the control and MSG rats, treated or untreated with metformin, were grafted with Walker 256 carcinoma cells. Tumor weight was evaluated 14 days after cancer cell inoculation. The blood insulin, glucose levels and glucose-induced insulin secretion were evaluated. RESULTS: Chronic metformin treatment improved the glycemic homeostasis in pre-diabetic MSG-rats, glucose intolerance, tissue insulin resistance, hyperinsulinemia and decreased the fat tissue accretion. Meanwhile, the metformin treatment did not interfere with the glucose insulinotropic effect on isolated pancreatic islets. Chronic treatment with metformin was able to decrease the Walker 256 tumor weight by 37% in control and MSG rats. The data demonstrated that the anticancer effect of metformin is not related to its role in correcting metabolism imbalances, such as hyperinsulinemia. However, in morphological assay to apoptosis, metformin treatment increased programmed cell death. CONCLUSION: Metformin may have a direct effect on cancer growth, and it may programs the rat organism to attenuate the growth of Walker 256 carcinoma.


Subject(s)
Carcinoma 256, Walker/drug therapy , Cell Proliferation/drug effects , Diabetes Mellitus, Experimental/drug therapy , Metformin/administration & dosage , Neoplasms/drug therapy , Animals , Blood Glucose , Carcinoma 256, Walker/metabolism , Carcinoma 256, Walker/pathology , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Glucose Intolerance/drug therapy , Glucose Intolerance/pathology , Hypoglycemic Agents/administration & dosage , Insulin/metabolism , Insulin Resistance/genetics , Islets of Langerhans/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Rats , Sodium Glutamate/toxicity
15.
J Endocrinol ; 221(2): 285-95, 2014 May.
Article in English | MEDLINE | ID: mdl-24599936

ABSTRACT

Nutritional insults during developmental plasticity have been linked with metabolic diseases such as diabetes in adulthood. We aimed to investigate whether a low-protein (LP) diet at the beginning of adulthood is able to program metabolic disruptions in rats. While control rats ate a normal-protein (23%; NP group) diet, treated rats were fed a LP (4%; LP group) diet from 60 to 90 days of age, after which an NP diet was supplied until they were 150 days old. Plasma levels of glucose and insulin, autonomous nervous system (ANS), and pancreatic islet function were then evaluated. Compared with the NP group, LP rats exhibited unchanged body weight and reduced food intake throughout the period of protein restriction; however, after the switch to the NP diet, hyperphagia of 10% (P<0.05), and catch-up growth of 113% (P<0.0001) were found. The LP rats showed hyperglycemia, insulin resistance, and higher fat accretion than the NP rats. While the sympathetic tonus from LP rats reduced by 28%, the vagus tonus increased by 21% (P<0.05). Compared with the islets from NP rats, the glucose insulinotropic effect as well as cholinergic and adrenergic actions was unaltered in the islets from LP rats. Protein restriction at the beginning of adulthood induced unbalanced ANS activity and fat tissue accretion later in life, even without functional disturbances in the pancreatic islets.


Subject(s)
Autonomic Nervous System/physiopathology , Diet, Protein-Restricted/adverse effects , Islets of Langerhans/innervation , Islets of Langerhans/metabolism , Animals , Birth Weight/drug effects , Birth Weight/physiology , Blood Glucose/metabolism , Cells, Cultured , Dietary Proteins/metabolism , Insulin/metabolism , Islets of Langerhans/drug effects , Male , Rats , Rats, Wistar , Time Factors
16.
J Endocrinol ; 216(2): 195-206, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23151360

ABSTRACT

Similar to gestation/lactation, puberty is also a critical phase in which neuronal connections are still being produced and during which metabolic changes may occur if nutrition is disturbed. In the present study we aimed to determine whether peripubertal protein restriction induces metabolic programming. Thirty-day-old male rats were fed either a low protein (LP group) diet (4% w/w protein) or a normal protein (NP group) diet (23%) until 60 days of age, when they received the NP diet until they were 120 days old. Body weight (BW), food intake, fat tissue accumulation, glucose tolerance, and insulin secretion were evaluated. The nerve electrical activity was recorded to evaluate autonomous nervous system (ANS) function. Adolescent LP rats presented hypophagia and lower BW gain during the LP diet treatment (P<0.001). However, the food intake and BW gain by the LP rats were increased (P<0.001) after the NP diet was resumed. The LP rats presented mild hyperglycemia, hyperinsulinemia, severe hyperleptinemia upon fasting, peripheral insulin resistance and increased fat tissue accumulation and vagus nerve activity (P<0.05). Glucose-induced insulin secretion was greater in the LP islets than in the NP islets; however, the cholinergic response was decreased (P<0.05). Compared with the islets from the NP rats, the LP islets showed changes in the activity of muscarinic receptors (P<0.05); in addition, the inhibition of glucose-induced insulin secretion by epinephrine was attenuated (P<0.001). Protein restriction during adolescence caused high-fat tissue accumulation in adult rats. Islet dysfunction could be related to an ANS imbalance.


Subject(s)
Diet, Protein-Restricted/adverse effects , Islets of Langerhans/metabolism , Puberty/metabolism , Animals , Body Weight/physiology , Eating/physiology , Glucose/pharmacology , Hyperglycemia/metabolism , Hyperinsulinism/metabolism , Insulin/metabolism , Male , Rats
17.
Phytother Res ; 23(2): 231-5, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18803228

ABSTRACT

The essential oil of Achillea millefolium is commonly used in folk medicine for the treatment of several diseases and has been demonstrated previously to exert an in vitro antimicrobial activity against human pathogens. Current study investigates the genotoxic activity of A. millefolium oil. The oil's major constituents are: chamazulene (42.15%), sabinene (19.72%), terpin-4-ol (5.22%), beta-caryophyllene (4.44%) and eucalyptol (3.10%), comprising 74.63% of the total. The oil's genotoxic evaluation was performed at concentrations of 0.13 microL/mL, 0.19 microL/mL and 0.25 microL/mL with a heterozygous diploid strain of Aspergillus nidulans, named A757//UT448, with green conidia. A statistically significant increasing number of yellow and white mitotic recombinants, per colony, of the diploid strain was reported after oil treatment with 0.19 microL/mL and 0.25 microL/mL concentrations. The genotoxicity of the oil was associated with the induction of mitotic non-disjunction or crossing-over by oil.


Subject(s)
Achillea/chemistry , Aspergillus nidulans/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Aspergillus nidulans/genetics , Crossing Over, Genetic/drug effects , Gas Chromatography-Mass Spectrometry , Medicine, Traditional , Mutagenicity Tests , Nondisjunction, Genetic/drug effects
18.
Braz. j. microbiol ; 38(3): 430-434, July-Sept. 2007. ilus, graf, tab
Article in English | LILACS | ID: lil-464766

ABSTRACT

Sulindac sulfide is a non-steroidal anti-inflammatory drug (NSAID) with chemopreventive effect on human cancer cells. Due to the involvement of the somatic recombination in the carcinogenic process, sulindac sulfide's recombinogenic potential was evaluated by the Homozygotization Index (HI) in the filamentous fungus Aspergillus nidulans. The drug's recombinogenic potential was evaluated by its capacity to induce homozygosis of recessive genes from heterozygous diploid cells. Sulindac sulfide at 175 and 350 æM concentrations induced mitotic recombination in A. nidulans diploid cells, with HI values for genetic markers higher than 2.0, and significantly different from control HI values. The recombinogenic effect of NSAID was related to the induction of DNA strand breaks and cell cycle alterations. Sulindac sulfide's carcinogenic potential was also discussed.


Sulfeto de sulindaco é um antiinflamatório não-esteroidal com efeitos quimiopreventivos em cânceres humanos. O presente estudo teve como objetivo avaliar o potencial recombinagênico do sulfeto de sulindaco em células diplóides de Aspergillus nidulans. O efeito recombinagênico da droga foi demonstrado através da homozigotização de genes recessivos, previamente presentes em heterozigose. Os valores de HI (índice de Homozigotização) para diferentes marcadores genéticos apresentaram-se maiores do que 2,0 e significativamente diferentes dos valores obtidos em sulfeto de sulindaco ausência da droga (controle). O potencial recombinagênico do sulfeto de sulindaco foi associado à indução de quebras na molécula do DNA e a alterações no ciclo celular. O potencial carcinogênico do sulfeto de sulindaco foi discutido no presente trabalho.


Subject(s)
Humans , Anti-Inflammatory Agents , Aspergillus nidulans , Homozygote , In Vitro Techniques , Recombination, Genetic , Sulfides , Sulindac , Genetic Markers , Methods , Sampling Studies
SELECTION OF CITATIONS
SEARCH DETAIL