Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 339: 127791, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-32860997

ABSTRACT

Monoterpenes are non-polar secondary metabolites widely used by industry due to their excellent therapeutic, food-ingredient and cosmetic properties. However, their low solubility in water limits their use. In this sense, cyclodextrins (CDs) have been widely used to solve these technological challenges. Thus, this study aims to use (-)-borneol as a monoterpene model to prepare inclusion complexes between ß-CD and hydroxypropyl-ß-CD (HP-ß-CD) through different ways and characterize them in order to choose the best inclusion method to improve physicochemical properties of monoterpenes. To achieve this goal, the samples were prepared by physical mixture (PM), paste complex (PA) and freeze-drying complex (FD) and then, extensively characterized by thermal analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, size particle, X-ray diffraction and nuclear magnetic resonance. The physicochemical results showed that freeze-drying was more effective to form inclusion complexes between (-)-borneol with both CDs. This research highlights the importance of recognizing the best method to prepare inclusion complexes, including food additives as (-)-borneol, to achieve better results in food preparations.


Subject(s)
Camphanes/chemistry , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Calorimetry, Differential Scanning , Food Ingredients , Freeze Drying/methods , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Monoterpenes/chemistry , Particle Size , Solubility , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction
2.
Drug Deliv Transl Res ; 10(6): 1829-1840, 2020 12.
Article in English | MEDLINE | ID: mdl-32562254

ABSTRACT

We developed a pectin-based hydrogel containing nanocapsules as a new strategy for melanoma treatment. Our first objective was to evaluate the nanoencapsulation effect of imiquimod on melanoma. Imiquimod-loaded polymeric nanocapsules (NCimiq) showed significant time-dependent decrease in cell viability after treatment at 3 µmol L-1 (79% viable cells in 24 h and 55% in 72 h), which was not observed in cells treated with the solution of the drug (IMIQ) (99% viable cells in 24 h and 91% in 72 h). The second objective was to develop the hydrogel containing the drug-loaded nanocapsules (PEC-NCimiq). In vitro release study showed that 63% of imiquimod was released from the pectin-based hydrogel containing the drug (PEC-imiq) after 2 h, while 60% of the drug was released from PEC-NCimiq after 8 h. In the permeation study, 2.5 µg of imiquimod permeated the skin within 8 h after the initial contact of PEC-NCimiq, whereas only 2.1 µg of drug permeated after 12 h of contact when PEC-imiq was assayed. Pectin-based hydrogels enabled the drug penetration in all skin layers, especially the dermis (PEC-NCimiq = 6.8 µg and PEC-imiq = 4.3 µg). In the adhesion study, PEC-NCimiq showed the highest adhesiveness (42% removed from the skin) in comparison to PEC-imiq (71% removed from the skin). In conclusion, the nanoencapsulation provided a higher cytotoxic effect of imiquimod in SK-MEL-28, and the incorporation of the drug-loaded nanocapsules in pectin-based hydrogel showed higher adhesiveness and deeper penetration of the drug into the skin. Graphical abstract.


Subject(s)
Hydrogels , Imiquimod/administration & dosage , Melanoma , Nanocapsules , Pectins , Animals , Cell Line, Tumor , Humans , Melanoma/drug therapy , Swine
SELECTION OF CITATIONS
SEARCH DETAIL