Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 6583, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097569

ABSTRACT

A major goal in evolutionary biology is to elucidate common principles that drive human and other animal societies to adopt either a warlike or peaceful nature. One proposed explanation for the variation in aggression between human societies is the democratic peace hypothesis. According to this theory, autocracies are more warlike than democracies because autocratic leaders can pursue fights for private gain. However, autocratic and democratic decision-making processes are not unique to humans and are widely observed across a diverse range of non-human animal societies. We use evolutionary game theory to evaluate whether the logic of democratic peace may apply across taxa; specifically adapting the classic Hawk-Dove model to consider conflict decisions made by groups rather than individuals. We find support for the democratic peace hypothesis without mechanisms involving complex human institutions and discuss how these findings might be relevant to non-human animal societies. We suggest that the degree to which collective decisions are shared may explain variation in the intensity of intergroup conflict in nature.


Subject(s)
Biological Evolution , Game Theory , Animals , Humans , Democracy , Aggression , Behavior, Animal , Decision Making , Conflict, Psychological
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1851): 20210140, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35369752

ABSTRACT

War, in human and animal societies, can be extremely costly but can also offer significant benefits to the victorious group. We might expect groups to go into battle when the potential benefits of victory (V) outweigh the costs of escalated conflict (C); however, V and C are unlikely to be distributed evenly in heterogeneous groups. For example, some leaders who make the decision to go to war may monopolize the benefits at little cost to themselves ('exploitative' leaders). By contrast, other leaders may willingly pay increased costs, above and beyond their share of V ('heroic' leaders). We investigated conflict initiation and conflict participation in an ecological model where single-leader-multiple-follower groups came into conflict over natural resources. We found that small group size, low migration rate and frequent interaction between groups increased intergroup competition and the evolution of 'exploitative' leadership, while converse patterns favoured increased intragroup competition and the emergence of 'heroic' leaders. We also found evidence of an alternative leader/follower 'shared effort' outcome. Parameters that favoured high contributing 'heroic' leaders, and low contributing followers, facilitated transitions to more peaceful outcomes. We outline and discuss the key testable predictions of our model for empiricists studying intergroup conflict in humans and animals. This article is part of the theme issue 'Intergroup conflict across taxa'.


Subject(s)
Leadership , Animals
3.
Proc Biol Sci ; 284(1865)2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29070720

ABSTRACT

An individual's ecological environment affects their mortality risk, which in turn has fundamental consequences for life-history evolution. In many species, social relationships are likely to be an important component of an individual's environment, and therefore their mortality risk. Here, we examine the relationship between social position and mortality risk in resident killer whales (Orcinus orca) using over three decades of social and demographic data. We find that the social position of male, but not female, killer whales in their social unit predicts their mortality risk. More socially integrated males have a significantly lower risk of mortality than socially peripheral males, particularly in years of low prey abundance, suggesting that social position mediates access to resources. Male killer whales are larger and require more resources than females, increasing their vulnerability to starvation in years of low salmon abundance. More socially integrated males are likely to have better access to social information and food-sharing opportunities which may enhance their survival in years of low salmon abundance. Our results show that observable variation in the social environment is linked to variation in mortality risk, and highlight how sex differences in social effects on survival may be linked to sex differences in life-history evolution.


Subject(s)
Mortality , Social Dominance , Whale, Killer/physiology , Animals , British Columbia , Female , Male , Population Dynamics , Risk , Sex Factors , Washington
SELECTION OF CITATIONS
SEARCH DETAIL