Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Microb Ecol ; 49(1): 63-72, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15650915

ABSTRACT

A total of 1246 Pseudomonas strains were isolated from the rhizosphere of two perennial grasses (Lolium perenne and Molinia coerulea) with different nitrogen requirements. The plants were grown in their native soil under ambient and elevated atmospheric CO2 content (pCO2) at the Swiss FACE (Free Air CO2 Enrichment) facility. Root-, rhizosphere-, and non-rhizospheric soil-associated strains were characterized in terms of their ability to reduce nitrate during an in vitro assay and with respect to the genes encoding the membrane-bound (named NAR) and periplasmic (NAP) nitrate reductases so far described in the genus Pseudomonas. The diversity of corresponding genes was assessed by PCR-RFLP on narG and napA genes, which encode the catalytic subunit of nitrate reductases. The frequency of nitrate-dissimilating strains decreased with root proximity for both plants and was enhanced under elevated pCO2 in the rhizosphere of L. perenne. NAR (54% of strains) as well as NAP (49%) forms were present in nitrate-reducing strains, 15.5% of the 439 strains tested harbouring both genes. The relative proportions of narG and napA detected in Pseudomonas strains were different according to root proximity and for both pCO2 treatments: the NAR form was more abundant close to the root surface and for plants grown under elevated pCO2. Putative denitrifiers harbored mainly the membrane-bound (NAR) form of nitrate reductase. Finally, both narG and napA sequences displayed a high level of diversity. Anyway, this diversity was correlated neither with the root proximity nor with the pCO2 treatment.


Subject(s)
Genetic Variation , Nitrate Reductases/genetics , Plant Roots/microbiology , Poaceae/microbiology , Pseudomonas/genetics , Soil Microbiology , Carbon Dioxide/metabolism , Colony Count, Microbial , DNA Primers , Membrane Proteins/metabolism , Periplasmic Proteins/metabolism , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Pseudomonas/enzymology , Switzerland
2.
Environ Microbiol ; 4(11): 634-43, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12460271

ABSTRACT

Technical developments in molecular biology have found extensive applications in the field of microbial ecology. Among these techniques, fingerprinting methods such as denaturing gel electrophoresis (DGE, including the three options: DGGE, TGGE and TTGE) has been applied to environmental samples over this last decade. Microbial ecologists took advantage of this technique, originally developed for the detection of single mutations, for the analysis of whole bacterial communities. However, until recently, the results of these high quality fingerprinting patterns were restricted to a visual interpretation, neglecting the analytical potential of the method in terms of statistical significance and ecological interpretation. A brief recall is presented here about the principles and limitations of DGE fingerprinting analysis, with an emphasis on the need of standardization of the whole analytical process. The main content focuses on statistical strategies for analysing the gel patterns, from single band examination to the analysis of whole fingerprinting profiles. Applying statistical method make the DGE fingerprinting technique a promising tool. Numerous samples can be analysed simultaneously, permitting the monitoring of microbial communities or simply bacterial groups for which occurrence and relative frequency are affected by any environmental parameter. As previously applied in the fields of plant and animal ecology, the use of statistics provides a significant advantage for the non-ambiguous interpretation of the spatial and temporal functioning of microbial communities.


Subject(s)
Bacteria/genetics , DNA Fingerprinting/methods , Data Interpretation, Statistical , Electrophoresis , Nucleic Acid Denaturation
3.
Int J Syst Evol Microbiol ; 50 Pt 1: 9-18, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10826782

ABSTRACT

Bacteria isolates phenotypically related to Pseudomonas corrugata have frequently been isolated from the rhizosphere of Arabidopsis thaliana and Brassica napus grown on different soils. 16S rDNA (rrs) gene sequencing, DNA-DNA hybridization, biochemical characterization and siderophore typing showed that these isolates belong to two different species that are distinct from other species of the genus Pseudomonas, including P. corrugata. A description of properties of these two new species is given based on the study of 16 isolates. Proposed names are Pseudomonas brassicacearum (10 strains studied) and Pseudomonas thivervalensis (6 strains studied). The type strain of Pseudomonas brassicacearum is CFBP 11706T and that of Pseudomonas thivervalensis is CFBP 11261T.


Subject(s)
Arabidopsis/microbiology , Brassica/microbiology , Plant Roots/microbiology , Pseudomonas/classification , Base Composition , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Nucleic Acid Hybridization , Phenotype , Phylogeny , Pseudomonas/isolation & purification , Pseudomonas/physiology , RNA, Ribosomal, 16S/genetics , Restriction Mapping , Sequence Analysis, DNA , Siderophores/classification
SELECTION OF CITATIONS
SEARCH DETAIL