Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
Heliyon ; 10(12): e32850, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975072

ABSTRACT

Simulated body fluid (SBF) is widely utilized in preclinical research for estimating the mineralization efficacy of biomaterials. Therefore, it is of great significance to construct an efficient and stable SBF mineralization system. The conventional SBF solutions cannot maintain a stable pH value and are prone to precipitate homogeneous calcium salts at the early stages of the biomimetic process because of the release of gaseous CO2. In this study, a simple but efficient five times SBF buffered by 5 % CO2 was developed and demonstrated to achieve excellent mineralized microstructure on a type of polymer-aligned nanofibrous scaffolds, which is strikingly similar to the natural human bone tissue. Scanning electron microscopy and energy-dispersive X-ray examinations indicated the growth of heterogeneous apatite with a high-calcium-to-phosphate ratio on the aligned nanofibers under 5 times SBF buffered by 5 % CO2. Moreover, X-ray diffraction spectroscopy and Fourier transform infrared analyses yielded peaks associated with carbonated hydroxyapatite with less prominent crystallization. In addition, the biomineralized aligned polycaprolactone nanofibers demonstrated excellent cell attachment, alignment, and proliferation characteristics in vitro. Overall, the results of this study showed that 5 × SBFs buffered by 5 % CO2 partial pressure are attractive alternatives for the efficient biomineralization of scaffolds in bone tissue engineering, and could be used as a model for the prediction of the bone-bonding bioactivity of biomaterials.

2.
J Hazard Mater ; 476: 135015, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38943886

ABSTRACT

The rapid proliferation of the halophilic pathogen Vibrio parahaemolyticus poses a severe health hazard to halobios and significantly impedes intensive mariculture. This study aimed to evaluate the potential application of gliding arc discharge plasma (GADP) to control the infection of Vibrio parahaemolyticus in mariculture. This study investigated the inactivation ability of GADP against Vibrio parahaemolyticus in artificial seawater (ASW), changes in the water quality of GADP-treated ASW, and possible inactivation mechanisms of GADP against Vibrio parahaemolyticus in ASW. The results indicate that GADP effectively inactivated Vibrio parahaemolyticus in ASW. As the volume of ASW increased, the time required for GADP sterilization also increased. However, the complete sterilization of 5000 mL of ASW containing Vibrio parahaemolyticus of approximately 1.0 × 104 CFU/mL was achieved within 20 min. Water quality tests of the GADP-treated ASW demonstrated that there were no significant changes in salinity or temperature when Vibrio parahaemolyticus (1.0 ×104 CFU/mL) was completely inactivated. In contrast to the acidification observed in plasma-activated water (PAW) in most studies, the pH of ASW did not decrease after treatment with GADP. The H2O2 concentration in the GADP-treated ASW decreased after post-treatment. The NO2-concentration in the GADP-treated ASW remained unchanged after post-treatment. Further analysis revealed that GADP induced oxidative stress in Vibrio parahaemolyticus, which increased cell membrane permeability and intracellular ROS levels of Vibrio parahaemolyticus. This study provides a viable solution for infection with the halophilic pathogen Vibrio parahaemolyticus and demonstrates the potential of GADP in mariculture.

3.
Clin Epigenetics ; 16(1): 77, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849868

ABSTRACT

OBJECTIVE: The major challenge in routine endocervical curettage (ECC) among Human Papillomavirus (HPV) 16/18-positive patients is that only a small fraction benefit. Nevertheless, current reported models often overestimate the validity and necessity of ECC, making it difficult to improve benefits for patients. This research hypothesized that assessing paired boxed gene 1 methylation levels (PAX1m) and clinical characteristics could enhance the predictive accuracy of detecting additional high-grade squamous intraepithelial lesions or worse (HSIL +) through ECC that were not identified by colposcopy-directed biopsy (CDB). METHODS: Data from 134 women with HPV16/18 positivity undergoing CDB and ECC between April 2018 and April 2022 were collected and analyzed. Quantitative methylation-specific polymerase chain reaction (qMSP) was utilized to measure PAX1m, expressed as ΔCp. Univariate and multivariate regression analyses were conducted to screen variables and select predictive factors. A nomogram was constructed using multivariate logistic regression to predict additional HSIL + detected by ECC. The discrimination, calibration, and clinical utility of the nomogram were evaluated using receiver operating characteristic curves (ROC) and the calibration plot. RESULTS: Age (odds ratio [OR], 5.654; 95% confidence interval [CI], 1.131-37.700), cytology (OR, 24.978; 95% CI, 3.085-540.236), and PAX1 methylation levels by grade (PAX1m grade) (OR, 7.801; 95% CI, 1.548-44.828) were independent predictive factors for additional detection of HSIL + by ECC. In HPV16/18-positive women, the likelihood of additional detection of HSIL + through ECC increased with the severity of cytological abnormalities, peaking at 43.8% for high-grade cytological lesions. Moreover, when cytological findings indicated low-grade lesions, PAX1 methylation levels were positively correlated with the additional detection of HSIL + by ECC (P value < 0.001). A nomogram prediction model was developed (area under curve (AUC) = 0.946; 95% CI, 0.901-0.991), demonstrating high sensitivity (90.9%) and specificity (90.5%) at the optimal cutoff point of 107. Calibration analysis confirmed the model's strong agreement between predicted and observed probabilities. CONCLUSION: The clinical nomogram presented promising predictive performance for the additional detection of HSIL + through ECC among women with HPV16/18 infection. PAX1 methylation level could serve as a valuable tool in guiding individualized clinical decisions regarding ECC for patients with HPV 16/18 infection, particularly in cases of low-grade cytological findings.


Subject(s)
Colposcopy , DNA Methylation , Human papillomavirus 16 , Human papillomavirus 18 , Nomograms , Paired Box Transcription Factors , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Paired Box Transcription Factors/genetics , Human papillomavirus 16/genetics , Human papillomavirus 16/isolation & purification , Adult , DNA Methylation/genetics , Middle Aged , Human papillomavirus 18/genetics , Human papillomavirus 18/isolation & purification , Papillomavirus Infections/diagnosis , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/pathology , Curettage/methods , ROC Curve , Uterine Cervical Dysplasia/virology , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/pathology , Cervix Uteri/pathology , Cervix Uteri/virology
4.
Colloids Surf B Biointerfaces ; 239: 113959, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772085

ABSTRACT

Cartilage repair remains a major challenge in clinical trials. These current cartilage repair materials can not effectively promote chondrocyte generation, limiting their practical application in cartilage repair. In this work, we develop an implantable scaffold of RADA-16 peptide hydrogel incorporated with TGF-ß1 to provide a microenvironment for stem cell-directed differentiation and chondrocyte adhesion growth. The longest release of growth factor TGF-ß1 release can reach up to 600 h under physiological conditions. TGF-ß1/RADA-16 hydrogel was demonstrated to be a lamellar porous structure. Based on the cell culture with hBMSCs, TGF-ß1/RADA-16 hydrogel showed excellent ability to promote cell proliferation, directed differentiation into chondrocytes, and functional protein secretion. Within 14 days, 80% of hBMSCs were observed to be directed to differentiate into vigorous chondrocytes in the co-culture of TGF-ß1/RADA-16 hydrogels with hBMSCs. Specifically, these newly generated chondrocytes can secrete and accumulate large amounts of collagen II within 28 days, which can effectively promote the formation of cartilage tissue. Finally, the exploration of RADA-16 hydrogel-based scaffolds incorporated with TGF-ß1 bioactive species would further greatly promote the practical clinical trials of cartilage remediation, which might have excellent potential to promote cartilage regeneration in areas of cartilage damage.


Subject(s)
Cartilage , Cell Differentiation , Chondrocytes , Hydrogels , Regeneration , Tissue Scaffolds , Transforming Growth Factor beta1 , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Regeneration/drug effects , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Chondrocytes/drug effects , Chondrocytes/cytology , Chondrocytes/metabolism , Cell Differentiation/drug effects , Cartilage/drug effects , Cartilage/physiology , Cartilage/metabolism , Cell Proliferation/drug effects , Tissue Engineering/methods , Cells, Cultured , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Animals , Chondrogenesis/drug effects , Peptides
5.
J Environ Manage ; 359: 120987, 2024 May.
Article in English | MEDLINE | ID: mdl-38692029

ABSTRACT

The removal of organic pollutants in water environments and the resource utilization of solid waste are two pressing issues around the world. Facing the increasing pollution induced by discharge of mining effluents containing sodium isopropyl xanthate (SIPX), in this work, municipal solid waste incineration fly ash (MSWI FA) was pretreated by hydrothermal method to produce stabilized FA, which was then innovatively used as support for the construction of FA/TiO2/BiOCl nanocomposite (FTB) with promoted photocatalytic activity under visible light and natural sunlight. When the content of FA was 20 wt% and the mass ratio of TiO2 to BiOCl was 4:6, a remarkable performance for the optimal FTB (20-FTB-2) was achieved. Characterizations demonstrated that TiO2 and BiOCl uniformly dispersed on FA contributing to high surface area and broad light adsorption of FTB, which exhibits excellent adsorption capacity and light response ability. Build in electric field formed in the interface of TiO2/BiOCl heterojunction revealed by density functional theory calculations accelerated the separation of photoinduced e- and h+, leading to high efficiency for SIPX degradation. The synergetic effect combined with adsorption and photocatalytic degradation endowed 20-FTB-2 superior SIPX removal efficiency over 99% within 30 min under visible light and natural sunlight irradiation. The photocatalytic degradation pathways of SIPX were determined through theoretical calculations and characterizations, and the toxic byproduct CS2 was effectively eliminated through oxidation of •O2-. For 20-FTB-2, reusability of photocatalyst was showed by cycle tests, also the concentrations of main heavy metals (Pb, Zn, Cu, Cr, and Cd) in the liquid phases released during photocatalyst preparation process (< 1 mg/L) and photodegradation process (< 8.5 µg/L) proved the satisfactory stability with low toxicity. This work proposed a novel strategy to develop efficient and stable support-based photocatalysts by utilizing MSWI FA and realize its resource utilization.


Subject(s)
Coal Ash , Nanocomposites , Titanium , Nanocomposites/chemistry , Titanium/chemistry , Coal Ash/chemistry , Catalysis , Adsorption , Solid Waste , Water Pollutants, Chemical/chemistry
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124317, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38692102

ABSTRACT

Nitroxyl (HNO), the single-electron reduction product of nitric oxide (NO), has attracted great interest in the treatment of congestive heart failure in clinical trials. In this paper, we describe the first coumarin-based compound N-hydroxy-2-oxo-2H-chromene-6-sulfonamide (CD1) as a dualfunctional HNO donor, which can release both an HNO signaling molecule and a fluorescent reporter. Under physiological conditions (pH 7.4 and 37 °C), the CD1 HNO donor can readily decompose with a half-life of ∼90 min. The corresponding stoichiometry HNO from the CD1 donor was confirmed using both Vitamin B12 and phosphine compound traps. In addition to HNO releasing, specifically, the degradation product 2-oxo-2H-chromene-6-sulfinate (CS1) was generated as a fluorescent marker during the decomposition. Therefore, the HNO amount released in situ can be accurately monitored through fluorescence generation. As compared to the CD1 donor, the fluorescence intensity increased by about 4.9-fold. The concentration limit of detection of HNO releasing was determined to be ∼0.13 µM according to the fluorescence generation of CS1 at physiological conditions. Moreover, the bioimaging of the CD1 donor was demonstrated in the cell culture of HeLa cells, where the intracellular fluorescence signals were observed, inferring the site of HNO release. Finally, we anticipate that this novel coumarin-based CD1 donor opens a new platform for exploring the biology of HNO.


Subject(s)
Coumarins , Fluorescent Dyes , Nitrogen Oxides , Coumarins/chemistry , Humans , Fluorescent Dyes/chemistry , Nitrogen Oxides/chemistry , Nitrogen Oxides/analysis , Spectrometry, Fluorescence , HeLa Cells
7.
Adv Mater ; 36(24): e2311760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569065

ABSTRACT

Glioblastoma (GBM) is the most aggressive and prevalent primary malignant tumor of the central nervous system. Traditional chemotherapy has poor therapeutic effects and significant side effects due to drug resistance, the natural blood-brain barrier (BBB), and nonspecific distribution, leading to a lack of clinically effective therapeutic drugs. Here, 1430 small molecule compounds are screened based on a high-throughput drug screening platform and a novel anti-GBM drug, lomitapide (LMP) is obtained. Furthermore, a bionic nanodrug delivery system (RFA NPs) actively targeting GBM is constructed, which mainly consists of tetrahedral DNA nanocages (tFNA NPs) loaded with LMP as the core and a folate-modified erythrocyte-cancer cell-macrophage hybrid membrane (FRUR) as the shell. FRUR camouflage conferred unique features on tFNA NPs, including excellent biocompatibility, improved pharmacokinetic profile, efficient BBB permeability, and tumor targeting ability. The results show that the LMP RFA NPs exhibited superior and specific anti-GBM activities, reduced off-target drug delivery, prolonged lifespan, and has negligible side effects in tumor-bearing mice. This study combines high-throughput drug screening with biomimetic nanodrug delivery system technology to provide a theoretical and practical basis for drug development and the optimization of clinical treatment strategies for GBM treatment.


Subject(s)
DNA , Glioblastoma , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Animals , Mice , Humans , DNA/chemistry , Cell Line, Tumor , Blood-Brain Barrier/metabolism , Nanostructures/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Benzimidazoles/chemistry , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology
8.
Heliyon ; 10(6): e27840, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545139

ABSTRACT

Background: In thyroid cancers, a reduction in the expression of the sodium/iodide symporter (NIS) is observed concomitant with a diminution in cancer cell differentiation. The ß-catenin/LEF-1 pathway emerges as a crucial regulatory pathway influencing the functional expression of NIS in human thyroid cancer cells. Further research is required to comprehensively elucidate the role of NIS overexpression in impeding the progression of thyroid cancer cells. Methods: Human papillary thyroid carcinoma (PTC) cell lines, specifically PTC-1 and KTC-1, were subjected to Scratch and Transwell assays, colony formation, and tumor sphere formation tests to investigate invasion and migration, focusing on the impact of NIS overexpression. The assessment involved the use of western blot to analyze the expression levels of ß-catenin, NIS, CD133, SRY-related HMG box2 (Sox2), lymphoid enhancer-binding factor 1 (LEF-1), NANOG, octamer-binding transcription factor 4 (Oct4), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), and epithelial cellular adhesion molecule (EpCAM). Statistical analysis was conducted using SPSS version 20.0, and the graphs were developed using GraphPad Prism 7 (GraphPad Software, Inc.). Results: Our observations revealed that Nthy-ori-3-1 cell lines exhibited notably higher average expression levels of NIS, yet significantly lower levels of LEF-1 and ß-catenin compared to PTC-1 and KTC-1 cell lines. Furthermore, the overexpression of ß-catenin resulted in reduced binding of LEF-1 to NIF promotion but concurrently increased the expression of NIS. The downregulation of NIS markedly enhanced the expression of ALDH1A1, CD133, OCT4, Nanog, SOX2, and EpCam-all of which are targets within the Wnt/ß-catenin signaling pathway. Conversely, the upregulation of NIS suppressed the expression of these proteins. Moreover, cells treated with ß-catenin activators demonstrated an increased capability to form more spheroids and displayed heightened aggressiveness. Conversely, the NIS overexpression (OE) group exhibited suppressed abilities in invasion and colony formation. Conclusion: Thyroid cancer cells exhibit diminished expression of NIS, and the invasion and maintenance of stem cells in thyroid cancer cells were hindered by NIS OE through the inhibition of the ß-catenin/LEF-1 pathway. Further research is warranted to comprehensively assess this outcome, which holds promise as a potential targeted treatment for thyroid cancer.

9.
Nitric Oxide ; 145: 49-56, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38364967

ABSTRACT

The precise release and characterization of nitroxyl (HNO) gas signaling molecule remain a challenge due to its short lifetime to date. To solve this issue, an azobenzene-based HNO donor (Azo-D1) was proposed as a colorimetric and fluorometric chemosensor for HNO releasing, to release both HNO and an azobenzene fluorescent reporter together. Specifically, the Azo-D1 has an HNO release half-life of ∼68 min under physiological conditions. The characteristic color change from the original orange to the yellow color indicated the decomposition of the donor molecule. In addition, the stoichiometry release of HNO was qualitatively and quantitatively verified through the classical phosphine compound trap. As compared with the donor molecule by itself, the decomposed product demonstrates a maximum fluorescence emission at 424 nm, where the increase of fluorescence intensity by 6.8 times can be applied to infer the real-time concentration of HNO. Moreover, cellular imaging can also be achieved using this Azo-D1 HNO donor through photoexcitation at 405 and 488 nm, where the real-time monitoring of HNO release was achieved without consuming the HNO source. Finally, the Azo-D1 HNO donor would open a new platform in the exploration of the biochemistry and the biology of HNO.


Subject(s)
Colorimetry , Nitrogen Oxides , Nitrogen Oxides/chemistry , Azo Compounds
10.
Sci Total Environ ; 918: 170467, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38290685

ABSTRACT

The emission of carcinogenic, teratogenic, and mutagenic polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste incineration (MSWI) of fly ash (FA) has attracted significant attention. Hydrothermal treatment (HT) has emerged as a practical approach for degrading PAHs during MSWI of FA by utilizing magnetite (Fe3O4) as a catalyst and hydrogen peroxide (H2O2) as an oxidizing agent. In this study, as an alternative to traditional hydroxyapatite (HAP), eggshell-derived magnetic hydroxyapatite (MHAP) was synthesized and applied in the hydrothermal catalytic degradation of PAHs in MSWI FA in an H2O2 system for the first time. The degradation efficiency of the PAHs is influenced not only by H2O2 but also by the choice of hydroxyapatite. Adding HAP or MHAP during hydrothermal treatment with H2O2 substantially reduced the overall PAH concentration and toxicity equivalent quantity (TEQ), superior to that without H2O2. MHAP demonstrated superior catalytic activity compared to HAP in the presence of H2O2 in the hydrothermal system. The hydrothermal detoxification of the PAHs increased with increasing MHAP dosage. By employing 0.5 mol/L H2O2 as the oxidant and 15 wt% MHAP as the catalyst, a total PAH degradation rate of 88.9 % was achieved, with a remarkable TEQ degradation rate of 98.3 %. Notably, the level of 4-6-ring PAHs, particularly benzo(a) pyrene (BaP) and dibenz(a,h)anthracene (DahA), with a TEQ of 1.0, was significantly reduced (by 69.4 % and 46.0 %, respectively). MHAP remained stable during the hydrothermal catalytic process, whereas H2O2 was effectively activated by MHAP and decomposed to produce strongly oxidizing hydroxyl (•OH) under hydrothermal conditions. •OH produced from the decomposition of H2O2 and metals on the surface of MHAP act as catalytically active centers, efficiently converting high-ring PAHs to low-ring PAHs. These findings provide valuable insights and a technological foundation for PAH detoxification in MSWI FA via hydrothermal catalytic oxidation.

11.
Phytomedicine ; 123: 155241, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128395

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases encountered in clinical practice. Curcumin can alleviate insulin resistance, inhibit oxidative stress response, reduce inflammation, reduce liver fat deposition, and effectively improve NAFLD through various modalities, inhibiting the progression into cirrhosis and fibrosis. PURPOSE: To explore the current status, hot spots, and developing trends of curcumin in NAFLD treatment through quantitative scientific analysis to serve as a reference for subsequent studies. STUDY DESIGN: A comprehensive analysis of the mechanism of action of curcumin in the treatment of NAFLD and methods to increase curcumin bioavailability using bibliometric analysis and literature review. METHODS: This study used VOSviewer software to analyze the literature related to curcumin treatment of NAFLD in the Web of Science (WOS) core set database. A comprehensive and in-depth review was conducted based on the results of scientific econometric research and literature review. RESULTS: The review observed that curcumin can activate various signaling pathways such as AMPK and NF-κB to inhibit oxidative stress and apoptosis, thereby reflecting its pharmacological effects: lowering lipid, anti-inflammatory, reducing insulin resistance, and anti-fibrosis. These mechanisms improve or even reverse the complex pathological features of lipid metabolism disorders associated with NAFLD. Curcumin also can potentially serve as a primary regulatory target for treating hepatic steatosis using gut microbiota. However, these pharmacological effects of curcumin were limited owing to its low bioavailability. CONCLUSION: This review discusses NAFLD treatment with curcumin, analyzes the reasons for its low bioavailability, and introduces models for studying and methods for improving curcumin bioavailability. As research on NAFLD grows, future research should capture the trend of basic research, pay attention to clinical research, and continuously explore the therapeutic potential of curcumin.


Subject(s)
Curcumin , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Curcumin/metabolism , Liver Cirrhosis/metabolism , Inflammation/drug therapy , Liver
12.
Eur J Radiol ; 170: 111256, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38096742

ABSTRACT

PURPOSE: To evaluate the benefits of a multifaceted concept, ANMTE (Appropriate Number of children, appropriate learning Methods, appropriate adaptive Training, and appropriate Encouragement), proposed by our group, in improving the success rate, efficiency and image quality of Magnetic Resonance (MR) examinations for children from 3 to 6 years old. METHOD: In this study, 150 participants were included from July 2019 to January 2023, including 50 non-sedated children in ANMTE group, 50 in the group with sedative, and 50 in the group with routine preparations. ANMTE refers to appropriate number of children, appropriate learning methods, appropriate adaptive training, and appropriate encouragement, developed by our group for MR examinations of children from 3 to 6 years old. Group differences in success rate, efficiency, and image quality were evaluated across the three groups using Kaplan-Meier, Log-rank and Chi-square test, respectively. RESULTS: The rates of successful MR examinations were 44/50 (88 %), 45/50 (90 %), and 36/50 (72 %) for ANMTE group, the group with sedatives and the group with routine preparations, respectively (P = 0.03). Image quality of the 3 groups showed no significant group difference (P = 0.067). In terms of the median duration of MR examinations, ANMTE group was comparable to the group with sedative (both were about 10.0 min), but better than the group with routine preparations (16.5 min) (P = 0.024). CONCLUSION: We demonstrated the feasibility of our comprehensive nursing method ANMTE in MR examinations of young children, similar to the group with sedative at the success rate and image quality as well as the durations of MR examinations. ANMTE has not only better efficiency but also higher safety as it does not require sedative, which could be promising in clinical routine MR examinations for young children aged 3-6 years old.


Subject(s)
Hypnotics and Sedatives , Magnetic Resonance Imaging , Child , Humans , Child, Preschool , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
13.
Sci Rep ; 13(1): 16505, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37783776

ABSTRACT

This study group consists of a total of 61 patients who underwent fibula flap and iliac flap surgeries to repair mandibular defects. Patients' Quality Of life (QOL) at 6 and 24 months after surgery is investigated and compared by the EORTC-QLQ-H&N and OHIP-14. The base data of the two groups of patients are collected and analysed by the SPSS 20.0 statistical software. Independent sample t test was conducted for EORTC-QLQ-H&N and OHIP-14 scores at two time points in each group. The 61 cases of free flap all survived and the difference in the location of the primary tumor between the two groups is statistically significant. The EORTC-QLQ-H&N showed that the score of speech, diet, social contact, and teeth all went up at 6 months after surgery, but went down dramatically at 24 months after surgery. The OHIP-14 showed that there was significant reduction in functional limitation at 24 months after surgery, with statistical significance (p < 0.05) between the groups of iliac flap (19.16 ± 5.33) and fibula flap (33.77 ± 7.71). Therefore, it is suggested that patients suffering from mandibular defects receive surgery utilizing the iliac flap, while those with a larger range of defects or lesions involving the condyle and chin should receive corrective surgery utilizing the fibular flap.


Subject(s)
Free Tissue Flaps , Quality of Life , Humans , Retrospective Studies , Fibula/surgery , Mandible/surgery , Bone Transplantation/methods
14.
ACS Nano ; 17(20): 19903-19913, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37801700

ABSTRACT

Designing a solid-state electrolyte that satisfies the operating requirements of solid-state batteries is key to solid-state battery applications. The consensus is that solid-state electrolytes need to allow fast ion transport, while providing better interfacial compatibility and mechanical tolerance. Herein, a simple but effective strategy is proposed, combining hard and soft component polymer systems, to exploit a solid polymer electrolyte (SPE) with a 3D network via an in situ graft polymerization. The 3D structure is constructed by a hard cellulose nanocrystal (CNC) as the skeleton and a soft polyacrylonitrile (PAN) as the filler through a dry-processing method. The reported systems have several advantages, including ease of processing, only requiring using an exceedingly small amount of solvent, light weight (ρ = 1.2 g cm-3), excellent mechanical stability (tensile strength of 9.5 MPa), and high ionic conductivity (3.9 × 10-4 S cm-1, 18 °C) and migration number (tLi+ = 0.8). In particular, the high conductivity is enabled: the efficient Li+ transportation path constructed between CNC-PAN powders and abundant sulfonate radicals and hydroxyl groups on the CNC surface acts as the bridge of Li+ transition. When the CNCs are grafted onto the PAN polymer, the dipole-dipole interaction between the nitrile groups of the PAN and the hydroxyl groups of the CNCs can help to improve the mechanical stability and ionic conductivity of the SPE. Moreover, a tightly formed interface between SPE and LiFePO4 (LFP)/carbon black/SPE cathode can be achieved in an assembled solid-state battery by hot pressing, thus further enhancing the battery's performance.

15.
Polymers (Basel) ; 15(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37896431

ABSTRACT

The subgrade soil of asphalt pavement is significantly susceptible to changes in moisture content, and therefore many projects introduce polymer-based reinforcement to ensure soil performance. This paper aims to incorporate a variable representing the dry-wet cycle into the prediction model of resilient modulus of polymer reinforced soil. The polymer adopted is a self-developed subgrade soil solidification material consisting of sodium dodecyl sulfate and polyvinyl oxide. The current resilient modulus prediction model is improved, notably involving the effects of the dry-wet cycle. Combined with finite element method (FEM) analysis, the actual stress state of pavement and the coupling effect of dry-wet cycle and vehicle load on the resilient modulus are studied. The deterioration in resilient modulus with the variation in seasonal climate and load response is also investigated. Results show that the deviator stress is negatively correlated with the resilient modulus while the bulk stress has a linearly positive relation. The decreasing rate at low deviator stress is larger than that at the high level. Moreover, the dry-wet cycle can reduce the resilient modulus and the reducing amplitude is the largest at the first dry-wet cycle. FEM analysis shows that the middle position of the subgrade slope has the largest initial resilient modulus with decreasing amplitude in the first year of dry-wet cycles, while the upper position shows a smaller change. The variation in resilient modulus is closely related to the changes in cumulative volumetric water content. Considering that different positions of subgrade bear the external vehicle load, the equivalent resilient modulus is more realistic for guiding the subgrade design.

16.
Phytomedicine ; 121: 155085, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37757709

ABSTRACT

BACKGROUND: Lamiophlomis Herba (LH) is a valuable traditional medicinal plant found on the Qinghai-Tibetan Plateau that promotes blood circulation, removes blood stasis, and has antibacterial and anti-inflammatory properties. The main components of LH are iridoid glycosides, phenethyl alcohol glycosides, flavonoids, and polysaccharides. PURPOSE: To investigate the mechanism of the anti-liver fibrosis effects of LH and screen for its bioactive compounds. STUDY DESIGN: Screening LH marker components and validating the LH anti-liver fibrosis mechanism. METHODS: The active ingredients of LH were identified using UPLC-Q-TOF-MS, and HotMap combined with principal components analysis (PCA) was used to screen for marker components. Network pharmacology and molecular docking techniques were used to predict the potential anti-fibrotic targets of LH. Immunofluorescence, enzyme-linked immunosorbent assay (ELISA), real-time PCR (RT-PCR), and western blotting were used for experimental validation and mechanistic studies. RESULTS: Fifteen compounds that actively contributed to the cluster were identified as marker compounds. Acteoside, 8-O-acetyl shanzhiside methyl ester (8-O-ASME), Luteolin, Shanzhiside Methyl ester (SME), Loganin, Loganate were the main active components. Network pharmacology and molecular docking studies have shown that LH might improve liver fibrosis, inflammation, and oxidative stress, which might be related to key targets such as PTGS2, MAPK, EGFR, AKT1, SRC, Fn1, Col3a1, Col1a1, and PC-III. The results of ELISA, RT-PCR and western blot experiments showed that Acteoside, 8-O-ASME, Luteolin, SME, Loganin, Loganate, and the LH group could reduce the levels of fibronectin, Col1a1, Col3a1, α-SMA, Col-Ⅳ, LN, and PC-Ⅲ. CONCLUSION: LH improves liver fibrosis induced by HSC-T6 cells and inhibits the deposition of extracellular matrix (ECM) in hepatocytes, resulting in a decrease in the degree of liver fibrosis and a good anti-liver fibrosis effect.


Subject(s)
Drugs, Chinese Herbal , Luteolin , Humans , Molecular Docking Simulation , Liver Cirrhosis/drug therapy , Esters
17.
Adv Sci (Weinh) ; 10(34): e2304187, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632716

ABSTRACT

Photothermal materials have gained considerable attention in the field of anti-/de-icing due to its environmental friendliness and energy saving. However, it is always significantly challenging to obtain solar thermal materials with hierarchical structure and simultaneously demonstrate both the ultra-long icing delay ability and the superior photothermal de-icing ability. Here, a photothermal icephobic MOF-based micro and nanostructure surface (MOF-MNS) is presented, which consists of micron groove structure and fluorinated MOF nanowhiskers. The optimal MOF-M250 NS can achieve solar absorption of over 98% and produce a high temperature increment of 65.5 °C under 1-sun illumination. Such superior photothermal-conversion mechanism of MOF-M250 NS is elucidated in depth. In addition, the MOF-M250 NS generates an ultra-long icing delay time of ≈3960 s at -18 °C without solar illumination, achieving the longest delay time, which isn't reported before. Due to its excellent solar-to-heat conversation ability, accumulated ice and frost on MOF-M250 NS can be rapidly melted within 720 s under 1-sun illumination and it also holds a high de-icing rate of 5.8 kg m-2 h-1 . MOF-M250 NS possesses the versatility of mechanical robustness, chemical stability, and low temperature self-cleaning, which can synergistically reinforce the usage of icephobic surfaces in harsh conditions.

18.
ACS Appl Mater Interfaces ; 15(32): 38507-38521, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37551008

ABSTRACT

The large amount of waste chemical fiber textiles that exists has posed pressure on the sustainable development of the natural environment and of society. Therefore, it is of great importance to increase the added value of waste chemical fiber textiles and expand their applications in other fields. Herein, acrylic yarn from waste clothing is used as the raw material to construct a three-dimensional (3D) acrylic-based ceramic composite nanofiber solid electrolyte. The electrochemical properties of batteries based on this solid electrolyte are also investigated. We found that the fabricated composite electrolyte has good performance in lithium ion conduction and electrochemical stability because of its 3D acrylic-based ceramic composite fiber framework. The introduction of this composite electrolyte to a lithium symmetric battery enabled the battery to circulate stably for 2350 h at 50 °C without short-circuiting. In addition, all-solid-state batteries using a LiFePO4 cathode exhibited high reversible capacity. Lastly, a flexible lithium metal pouch battery was able to operate safely and stably under extreme conditions. This work demonstrates a strategy for upcycling waste textiles into ion-conducting polymers for energy storage applications.

19.
Int J Biol Macromol ; 252: 126371, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37595726

ABSTRACT

Currently, the controlled release of nitric oxide (NO) plays a crucial role in various biomedical applications. However, injectable NO-releasing materials remain an underexplored research field to date. In this study, via the incorporation of S-nitroso-N-acetyl-penicillamine (SNAP) as an NO donor, a family of NO-releasing injectable hydrogels was synthesized through the in situ cross-linking between sodium alginate and calcium ion induced by D-(+)-gluconate δ-lactone as an initiator. Initially, the organic functional groups and the corresponding morphologies of the resulting injectable hydrogels were characterized by IR and SEM spectroscopies, respectively. The NO release times of hydrogels with different SNAP loading amounts could reach up to 36-47 h. Due to the release of NO, the highest antibacterial rates of these injectable hydrogels against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were up to 95 %, respectively. Furthermore, the matrix of these hydrogels demonstrated great water absorption ability, swelling behavior, and degradation performance. Finally, we expect that these NO-releasing injectable hydrogels could have great potential applications various biomedical material fields.


Subject(s)
Hydrogels , Nitric Oxide , Nitric Oxide/metabolism , Hydrogels/pharmacology , Alginates , Staphylococcus aureus/metabolism , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , S-Nitroso-N-Acetylpenicillamine/pharmacology
20.
Bioorg Chem ; 139: 106751, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37531820

ABSTRACT

OBJECTIVE: To investigate the bioactive compounds of Schisandrae Chinensis Fructus (SCF) and their mechanisms of action in the treatment of drug-induced liver injury (DILI), specifically Acetaminophen (APAP)-induced DILI. METHOD: Chemical components in SCF were identified using the UPLC-Q-TOF-MS method. Active components were then screened using HotMap, combined with SCF efficacy results concerning the prevention and treatment of drug-induced liver injury. Its direct target was elucidated using a comprehensive chemical-pharmacodynamic-exosome approach. RESULT: We identified Schisandrol A, is a lignan component, as a key active compound that improved the symptoms DILI in mouse liver tissue; specifically, reducing oxidative stress and thereby the inflammatory response. To further understand the biological function of miRNAs in mouse liver exosomes, we used TargetScan (v5.0) and Miranda (v3.3a) to predict the target genes of MicroRNAs (miRNAs), where changes in the expression of mmu-let-7 family miRNAs were closely related to autophagy. This revealed differential miRNA target genes that were involved in 20 Kyoto Encyclopedia of Genes and Genomes pathways, including glycerol phosphate metabolism, inositol phosphate metabolism, phospholipase D signaling pathway, Rap1 signaling pathway, and Ras signaling pathway. CONCLUSION: Schisandrol A alleviated the symptoms of DILI in mice by inhibiting oxidative stress and inflammation, whereas, it alleviated DILI by activating autophagy in the exosomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...