Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(10): e19786, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37771526

ABSTRACT

Atmospheric mercury plays a crucial role in the biogeochemical cycle of mercury. This study conducted an intensive measurement of atmospheric mercury from 2015 to 2018 at a regional site in eastern China. During this period, the concentration of particle-bound mercury (PBM) decreased by 13%, which was much lower than those of gaseous elemenral mercury (GEM, 30%) and reactive gaseous mercury (GOM, 62%). The gradual decrease in the correlation between PBM and CO, K, and Pb indicates that the influence of primary emissions on PBM concentration was weakening. Moreover, the value of the partitioning coefficient (Kp) increased gradually from 0.05 ± 0.076 m3/µg in 2015 to 0.16 ± 0.37 m3/µg in 2018, indicating that GOM was increasingly inclined to adsorb onto particulate matter. Excluding the influence of meteorological conditions and the primary emissions, the change in aerosol composition is designated as the main trigger factor for the increasing gas-particle partitioning of reactive mercury (RM). The increasing ratio of Cl-, NO3-, and organics (Org) in the chemical composition of particle matters (PM2.5), as well as the decrease in the proportion of SO42-, NH4+, and K+, are conducive to the adsorption of GOM onto particles, forming PBM, which led to an increase of Kp and a lag of PBM reduction compared to GEM and GOM under the continuous control measures of anthropogenic mercury emissions. The evolution of aerosol compositions in recent years affects the migration and transformation of atmospheric mercury, which in turn can affect the biogeochemical cycle of mercury.

2.
Sci Total Environ ; 898: 165328, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37423276

ABSTRACT

A one-year observation of aerosols on a remote island was conducted and saccharides were applied to reveal the behaviors of organic aerosol in the East China Sea (ECS). The seasonal fluctuations of total saccharides were relatively small, with annual mean concentration of 64.82 ± 26.88 ng/m3, contributing 10.20 % and 4.90 % to WSOC and OC, respectively. However, the individual species showed significant seasonal variations due to the differences in both the emission sources and the influencing factors between marine and terrestrial areas. Anhydrosugars was the highest species and showed little diurnal variation in air mass from land areas. Primary sugars and primary sugar alcohols showed higher concentrations in blooming spring and summer and were higher in daytime than nighttime due to intense biogenic emissions both in marine and mainland areas. Accordingly, secondary sugar alcohols showed obvious different diurnal variation with ratios of day/night reducing to 0.86 in summer but even increasing to 1.53 in winter, attributing to the additional impact of secondary transmission process. Source appointment suggested that biomass burning emission (36.41 %) and biogenic emission (43.17 %) were the main causes of organic aerosol, while anthropogenic related secondary process and sea salt injection accounted for 13.57 % and 6.85 %, respectively. We further elucidate that the biomass burning emission might be underestimated, as levoglucosan undergoes degradation processes in the atmosphere, which are affected by various atmospheric physicochemical factors, and the degradation degree is particularly severe in remote areas like the oceans. In addition, significantly low ratio of levoglucosan to mannosan (L/M) occurred in air mass from marine area, indicating that levoglucosan was likely be more fully aged after hovering over a large-scale of oceanic area.

3.
Bioresour Technol ; 384: 129341, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37343801

ABSTRACT

The aim of this paper was to investigate the influence of Fe (III) on humification and free radicals evolution. The experimental data showed that the experimental group (CT) with Fe2(SO4)3 had a better degree of humification than the control group (CK). The humic substances (HS) content was 10% higher in CT (23.94 mg·g-1) than in CK (21.54 mg·g-1) in the final. Fe (III) contributed significantly to the formation of free radicals in HS. The amount of H2O2 in CT increased to 74.8 mmol·kg-1, while CK was only 46.5 mmol·kg-1. The content of semiquinone free radical was 10.32 × 1011 spins/mm3 in CT, 5.11 × 1011 spins/mm3 in CK in the end. Several iron-reducing bacteria were detected in composting, among which Paenibacillus was dominant. The above findings suggested that the application of Fe2(SO4)3 enhanced the iron reduction synergistic quinone redox cycling and promoted the generation of free radicals during the humification of composting.


Subject(s)
Composting , Humic Substances , Humic Substances/analysis , Hydrogen Peroxide , Quinones , Free Radicals , Oxidation-Reduction , Iron , Soil
4.
Bioresour Technol ; 380: 129125, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37127171

ABSTRACT

The purpose of this paper was to explore the promotion of maleic anhydride on the polymerization of precursors into humus in composting, and analyze the changes of key functional enzymes. The results showed that the content of humus in the treatment group added maleic anhydride (MAH) was higher than that in the control check (CK). The decrease rate of humus precursor concentration of MAH was also higher than that of CK. In MAH, the activities of laccase and tyrosinase were improved, thus enhanced the catalytic conversion of humus precursors. The analysis of bacterial community showed that maleic anhydride optimized the community structure of humification functional enzymes producing bacteria, with the most obvious increase of Firmicutes. In conclusion, this study provided theoretical supports for the introduction of maleic anhydride into the compost system to promote the polymerization of precursors to form humus.


Subject(s)
Composting , Soil , Maleic Anhydrides/chemistry , Bacteria , Polymerization , Manure
5.
Sci Total Environ ; 863: 160895, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36539088

ABSTRACT

Water soluble organic nitrogen (WSON) had great influences on the aerosol chemistry, hygroscopicity, marine primary productivity, as well as nitrogen biogeochemical cycles. Aerosol sampling was conducted over an offshore island in the East China Sea in four seasons of 2019, aiming to reveal the seasonal sources and secondary formation processes of marine WSON. The annual mean WSON concentration reached 1.05 ± 1.72 µg/m3 with a mean WSON/WSTN fraction of 27 %. In spring, WSON was associated with combustion emissions. The liquid-phase reaction of NH3/NH4+ with VOCs was a potential secondary formation process of WSON. In summer, WSON was mainly formed through the gaseous phase oxidation of marine biogenic precursors. In autumn, WSON showed miscellaneous sources from agricultural activities, biomass burning, and fossil fuel combustion. In addition to the contribution from primary urea, WSON could be also affected by the oxidation of biological proteinaceous matters. This explained the highest WSON concentrations and WSON/WSOC ratios in autumn. In winter, WSON was probably emitted from sea spray aerosols via the bubble-bursting processes. This study indicated that the sources of WSON over the coastal waters in the East China Sea were quite diverse, highlighting the need of more detailed characterization of marine WSON at the molecular level.

6.
Sci Total Environ ; 856(Pt 1): 159009, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36162579

ABSTRACT

In this study, the effect of Fe3+ on the quinone redox cycling driving lignocellulosic degradation in composting systems was investigated. The results showed that the degradation rates of cellulose, hemicellulose, and lignin were higher in the experimental group (CT) with Fe2(SO4)3 addition than in the blank group (CK) (CT, 52.55 %, 45.14 %, 56.98 %; CK, 49.63 %, 37.34 %, 52.3 %). Changes in the abundance of key enzymes for quinone reduction (AA3_1, AA3_2, AA6) and the structural succession of microbial communities were analyzed by metagenomic analysis. Among them, Fe2(SO4)3 had the most significant effect on AA3_2, with an approximately 8-fold increase in abundance compared to the beginning of composting. The dominant phylum in the composting process was Actinobacteria. In conclusion, the addition of Fe2(SO4)3 contributed to the quinone redox cycling and effectively improved the degradation rate of lignocellulose in composting.


Subject(s)
Composting , Lignin/metabolism , Metagenomics , Soil , Quinones , Oxidation-Reduction , Manure/microbiology
7.
J Environ Manage ; 325(Pt A): 116426, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36240639

ABSTRACT

This study focused on how adding ionic liquids (IL) affects composting humification. During the warming and thermophilic phases, addition of IL increased precursors content, and increased the polymerization of humus (HS) at later stages. Furthermore, the final HS and humic acid (HA) content of experimental groups (T) groups 129.79 mg/g and 79.91 mg/g were higher than in control group (CK) 118.57 mg/g and 74.53 mg/g, respectively (p < 0.05). IL up-regulated the gene abundance of metabolism for carbohydrate and amino acid (AA), and promoted the contributions of Actinobacteria and Proteobacteria, which affected humification. The redundancy analysis (RDA) results showed that the citrate-cycle (TCA cycle)(ko0020), pentose phosphate pathway (ko00030), pyruvate metabolism (ko00620), glyoxylate and dicarboxylate metabolism (ko00630), propanoate metabolism (ko00640), butanoate metabolism (ko00650) positively correlated with HA and HI. HA and humification index (HI) positively correlated with AA metabolic pathways, and fulvic acid (FA) was negatively correlated with these pathways. Overall, metabolism for carbohydrate and AA metabolism favored compost humification. ILs improved metabolism for carbohydrate and amino acid metabolism, thus enhancing humification.


Subject(s)
Composting , Ionic Liquids , Animals , Cattle , Manure , Humic Substances/analysis , Soil , Amino Acids , Metabolic Networks and Pathways , Carbohydrates
8.
Bioresour Technol ; 363: 127949, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36108576

ABSTRACT

This study was the first to explore the effect of shell powder (SP) on lignin degradation and humus (HS) formation during composting. The results showed that the treatment group (T) with SP consumed more polyphenols, reducing sugar and amino acids than the control group (CK), especially the rate of reducing sugar consumption in T (50.61 %) was significantly higher than CK (28.40 %). SP greatly enhanced the efficiency of lignin degradation (T:45.47 %; CK:24.63 %) and HS formation (T:34.93 %; CK:20.16 %). The content of HA in T was 12.94 mg/g while CK was 12.06 mg/g. SP maintained a continuous increase in the relative abundance of AA1, AA3 after cooling phase. Meanwhile, T (48.98 %) significantly increased the abundance of Actinobacteria compared with CK (37.19 %). Actinobacteria, AA1 and AA3 were identified as the main factors promoting lignin degradation and HS formation by correlation analysis. Therefore, adding SP could be a novel strategy to improve compost quality.


Subject(s)
Actinobacteria , Composting , Actinobacteria/metabolism , Amino Acids , Bacteria/metabolism , Dietary Sugars , Lignin/metabolism , Manure , Powders , Soil , Sugars
9.
Bioresour Technol ; 361: 127708, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35907603

ABSTRACT

In this study, HCO3- was used as a co-substrate for cyanate metabolism to investigate its effect on nitrogen cycle in composting. The results showed that the carbamate content in experimental group (T) with HCO3- added was higher than that in control group (CP) during cooling period. Actinobacteria and Proteobacteria were the dominant phyla for cyanate metabolism, and the process was mediated by cyanase gene (cynS). The cynS abundance was 16.6% higher in T than CP. In cooling period, the nitrification gene hao in T was 8.125% higher than CP. Denitrification genes narG, narH, nirK, norB, and nosZ were 25.64%, 35.33%, 45.93%, 36.62%, and 36.12% less than CP, respectively. The nitrogen fixation gene nifH in T was consistently higher than CP in the late composting period. Conclusively, cyanate metabolism drove the nitrogen cycle by promoting nitrification, nitrogen fixation, and inhibiting denitrification, which improved nitrogen retention and compost quality.


Subject(s)
Composting , Carbon , Cyanates/metabolism , Denitrification , Nitrogen/metabolism , Nitrogen Cycle , Soil
SELECTION OF CITATIONS
SEARCH DETAIL