Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892094

ABSTRACT

Alzheimer's Disease (AD), a prevalent neurodegenerative disorder, is the primary cause of dementia. Despite significant advancements in neuroscience, a definitive cure or treatment for this debilitating disease remains elusive. A notable characteristic of AD is oxidative stress, which has been identified as a potential therapeutic target. Polyphenols, secondary metabolites of plant origin, have attracted attention due to their potent antioxidant properties. Epidemiological studies suggest a correlation between the consumption of polyphenol-rich foods and the prevention of chronic diseases, including neurodegenerative disorders, which underscores the potential of polyphenols as a therapeutic strategy in AD management. Hence, this comprehensive review focuses on the diverse roles of polyphenols in AD, with a particular emphasis on neuroprotective potential. Scopus, ScienceDirect, and Google Scholar were used as leading databases for study selection, from 2018 to late March 2024. Analytical chemistry serves as a crucial tool for characterizing polyphenols, with a nuanced exploration of their extraction methods from various sources, often employing chemometric techniques for a holistic interpretation of the advances in this field. Moreover, this review examines current in vitro and in vivo research, aiming to enhance the understanding of polyphenols' role in AD, and providing valuable insights for forthcoming approaches in this context.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Polyphenols , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Polyphenols/therapeutic use , Polyphenols/chemistry , Polyphenols/pharmacology , Humans , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Animals , Oxidative Stress/drug effects , Antioxidants/therapeutic use , Antioxidants/pharmacology , Neuroprotection/drug effects
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279238

ABSTRACT

Bioactive compounds extracted from plum seeds were identified and quantified, aiming to establish how the brandy manufacturing process affects the properties and possible cascade valorization of seed residues. Extraction with n-hexane using Soxhlet has provided oils rich in unsaturated fatty acids (92.24-92.51%), mainly oleic acid (72-75.56%), which is characterized by its heart-healthy properties. The fat extracts also contain tocopherols with antioxidant and anti-inflammatory properties. All the ethanol-water extracts of the defatted seeds contain neochlorogenic acid (90-368 µg·g-1), chlorogenic acid (36.1-117 µg·g-1), and protocatechuate (31.8-100 µg·g-1) that have an impact on bioactive properties such as antimicrobial and antioxidant. Anti-amyloidogenic activity (25 mg·mL-1) was observed in the after both fermentation and distillation extract, which may be related to high levels of caffeic acid (64 ± 10 µg·g-1). The principal component analysis showed that all plum seed oils could have potential applications in the food industry as edible oils or in the cosmetic industry as an active ingredient in anti-aging and anti-stain cosmetics, among others. Furthermore, defatted seeds, after both fermentation and distillation, showed the greatest applicability in the food and nutraceutical industry as a food supplement or as an additive in the design of active packaging.


Subject(s)
Antioxidants , Prunus domestica , Antioxidants/chemistry , Prunus domestica/chemistry , Seeds/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Oils , Plant Oils/chemistry
3.
Antioxidants (Basel) ; 12(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38136161

ABSTRACT

The integrated valorization of food chain waste is one of the most promising alternatives in the transition to a sustainable bioeconomy. Thus, an efficient solid-phase matrix dispersion extraction method, using experimental factorial design and response surface methodology, has been developed and optimized for the recovery of polyphenols from defatted cherry seeds obtained after cherry liquor manufacture and subsequent fatty acid extraction, evaluating the effect of each processing step on the composition and phenolic content of sweet cherry residues. The phenolic extracts before fermentation showed the highest content of total polyphenols (TPC) and flavonoids (TFC) (3 ± 1 mg QE·g-1 and 1.37 ± 0.08 mg GAE·g-1, respectively), while the highest antioxidant capacity was obtained in the defatted seed extracts after both fermentation and distillation. In addition, high-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer (HPLC-ESI-QTOF-MS) was used to determine the phenolic profile. Dihydroxybenzoic acid, neochlorogenic acid, caffeic acid, and quercetin were the main phenolics found, showing differences in concentration between the stages of liquor production. The results underline the prospective of cherry by-products for obtaining phenol-rich bioactive extracts for possible use in different industrial sectors, offering a feasible solution for the cascade valorization of cherry agri-food waste.

4.
Molecules ; 28(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894525

ABSTRACT

Prunus fruit seeds are one of the main types of agri-food waste generated worldwide during the processing of fruits to produce jams, juices and preserves. To valorize this by-product, the aim of this work was the nutritional analysis of peach, apricot, plum and cherry seeds using the official AOAC methods, together with the extraction and characterization of the lipid profile of seed oils using GC-FID, as well as the measurement of the antioxidant activity and oxidative stability using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method. Chemometric tools were required for data evaluation and the obtained results indicated that the main component of seeds were oils (30-38%, w). All seed oils were rich in oleic (C18:1n9c) and linoleic (C18:2n6c) acids and presented heart-healthy lipid indexes. Oil antioxidant activity was estimated in the range IC50 = 20-35 mg·mL-1, and high oxidative stability was observed for all evaluated oils during 1-22 storage days, with the plum seed oil being the most antioxidant and stable over time. Oxidative stability was also positively correlated with oleic acid content and negatively correlated with linoleic acid content. Therefore, this research showed that the four Prunus seed oils present interesting healthy characteristics for their use and potential application in the cosmetic and nutraceutical industries.


Subject(s)
Fatty Acids , Refuse Disposal , Fatty Acids/chemistry , Antioxidants/analysis , Plant Oils/chemistry , Seeds/chemistry , Oxidative Stress
5.
Antioxidants (Basel) ; 12(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37760045

ABSTRACT

The fortification of foods with bioactive polyphenols aims to improve their functional properties and to provide health benefits. Yet, to exert their benefits, phenolic compounds must be released from the food matrix and absorbed by the small intestine after digestion, so assessing their bioaccessibility is crucial to determine their potential role. This work aims to incorporate Citrus reticulata Blanco peel extracts into wheat bread as a promising opportunity to increase their bioactive potential, along with supporting the sustainable management of citrus-industry waste. A control and a wheat bread enriched at 2% and 4% (w/v) with a phenolic extract from mandarin peels were prepared and analyzed for antioxidant activity and phenolic composition using LC-MS and UV-Vis spectrophotometry. In addition, in vitro digestion was performed, and the digested extracts were analyzed with HPLC-MS/MS. The results showed a significant increase in total flavonoid content (TFC, 2.2 ± 0.1 mg·g-1), antioxidant activity (IC50 = 37 ± 4 mg·g-1), and contents of quercetin, caffeic acid, and hesperidin in the 4% (w/v) enriched bread. Yet, most polyphenols were completely degraded after the in vitro digestion process, barring hesperidin (159 ± 36 µg·g-1), highlighting the contribution of citrus enrichment in the development of an enriched bread with antioxidant potential.

6.
Molecules ; 28(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36838611

ABSTRACT

Obtaining polyphenols from horticultural waste is an emerging trend that enables the valorization of resources and the recovery of value-added compounds. However, a pivotal point in the exploitation of these natural extracts is the assessment of their chemical stability. Hence, this study evaluates the effect of temperature storage (20 and -20 °C) and drying methods on the phenolic composition and antioxidant activity of clementine and lemon peel extracts, applying HPLC-DAD-MS, spectrophotometric methods, and chemometric tools. Vacuum-drying treatment at 60 °C proved to be rather suitable for retaining the highest antioxidant activity and the hesperidin, ferulic, and coumaric contents in clementine peel extracts. Lemon extracts showed an increase in phenolic acids after oven-drying at 40 °C, while hesperidin and rutin were sustained better at 60 °C. Hydroethanolic extracts stored for 90 days preserved antioxidant activity and showed an increase in the total phenolic and flavonoid contents in lemon peels, unlike in clementine peels. Additionally, more than 50% of the initial concentration was maintained up to 51 days, highlighting a half-life time of 71 days for hesperidin in lemon peels. Temperature was not significant in the preservation of the polyphenols evaluated, except for in rutin and gallic acid, thus, the extracts could be kept at 20 °C.


Subject(s)
Citrus , Hesperidin , Antioxidants/chemistry , Plant Extracts/chemistry , Phenols , Polyphenols , Citrus/chemistry , Rutin
7.
Food Res Int ; 160: 111714, 2022 10.
Article in English | MEDLINE | ID: mdl-36076409

ABSTRACT

The pharmaceutical and nutraceutical industries benefit greatly from recycling and transforming non-utilized parts of medicinal plants from agro-industrial operations into value added products. Hence, the aim of this work was to study the potential nutraceutical and pharmaceutical applications of Bunium ferulaceum Sm. aerial parts, in order to maximize their value. The phenolic profile of their hydromethanolic extract was determined and its antioxidant activity was evaluated in vitro and in vivo alongside with its anti-inflammatory activity and safety profile. The extract exerted an in vitro antioxidant activity mainly through radical scavenging (DPPH IC50: 14.0 ± 0.3 µg/ml) and iron chelating ability (24 ± 2 µg/ml), while, in vivo, the extract did not cause any mortality or visible signs of acute toxicity at high dose (2000 mg/kg body weight). The supplementation of the extract at different doses improved mice liver redox state by increasing catalase and reduced glutathione levels and reducing lipid peroxidation, without causing any toxicity. Moreover, the extract efficiently inhibited xylene induced ear inflammation (62 %). These different bioactivities were linked to the phenolic compounds present in the extract, particularly, chlorogenic acid (78 ± 6 mg/g extract), rutin (44 ± 2 mg/g extract) and hesperidin (56 ± 9 mg/g extract). However, further studies should be carried out on the isolated major compounds found in the extract to correlate the activity with these compounds or their mixture. The wasted aerial parts of Bunium ferulaceum Sm. proved to be a valuable source of polyphenols and exhibited interesting health promoting effects with no toxicity. Thus, Bunium ferulaceum Sm. aerial parts can be included in nutraceutical formulations or used as functional food and the extracted compounds may be used as an alternative food preservative.


Subject(s)
Antioxidants , Apiaceae , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Mice , Phenols/pharmacology , Plant Components, Aerial , Plant Extracts/pharmacology
8.
Anal Bioanal Chem ; 414(26): 7573-7584, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35982253

ABSTRACT

Alzheimer's disease (AD), the most prevalent neurodegenerative disease, is characterized by extracellular accumulation of amyloid-beta protein (Aß), which is believed to be the very starting event of AD neurodegeneration. In this work, D-Phe, D-Ala, and D-Glu amino acids, which are the non-occurring enantiomeric form in the human body, and also D-Asp and DL-SeMet, have proved to be amyloidogenic regarding Aß42 aggregation in TEM studies. These amyloidogenic amino acid enantiomers also widened Aß42 fibrils up to 437% regarding Aß42 alone, suggesting that Aß42 aggregation is enantiomerically dependent. To inhibit enantiomeric-induced amyloid aggregation, selenium nanoparticles stabilized with chitosan (Ch-SeNPs) were successfully synthesized and employed. Thus, Ch-SeNPs reduced and even completely inhibited Aß42 aggregation produced in the presence of some amino acid enantiomers. In addition, through UV-Vis spectroscopy and fluorescence studies, it was deduced that Ch-SeNPs were able to interact differently with amino acids depending on their enantiomeric form. On the other hand, antioxidant properties of amino acid enantiomers were evaluated by DPPH and TBARS assays, with Tyr enantiomers being the only ones showing antioxidant effect. All spectroscopic data were statistically analysed through experimental design and response surface analysis, showing that the interaction between the Ch-SeNPs and the amino acids studied was enantioselective and allowing, in some cases, to establish the concentration ratios in which this interaction is maximum.


Subject(s)
Alzheimer Disease , Chitosan , Nanoparticles , Neurodegenerative Diseases , Selenium , Humans , Selenium/pharmacology , Selenium/chemistry , Alzheimer Disease/drug therapy , Antioxidants/pharmacology , Antioxidants/chemistry , Chitosan/chemistry , Stereoisomerism , Amino Acids , Thiobarbituric Acid Reactive Substances , Amyloid beta-Peptides/chemistry , Nanoparticles/chemistry , Peptide Fragments/metabolism
9.
Anal Bioanal Chem ; 414(8): 2739-2755, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35112149

ABSTRACT

In this study, an integrated characterisation through polyphenol and caffeine content and antioxidant activity was combined with chemometric analysis to assess the effects of simulated in vitro gastrointestinal digestion on the bioaccessibility of these bioactive compounds from nine different tea infusions. Tea infusions were characterised based on total flavonoids, total polyphenols and antioxidant activity, together with the determination of individual polyphenol content. Fourteen phenolic compounds, including phenolic acids, stilbenes and flavonoids, were selected based on their reported bioactivity and high accessibility, attributed to their low molecular weight. Both polyphenols and caffeine were initially monitored in raw tea infusions and through the different digestion stages (salivary, gastric and duodenal) by capillary high performance liquid chromatography coupled to diode array detection (cHPLC-DAD) and/or HPLC coupled to a triple quadrupole mass analyser (HPLC-MS/MS). Multivariate analysis of the studied bioactives, using principal component analysis and cluster analysis, revealed that the decaffeination process seems to increase the stability and concentration of the compounds evaluated during digestion. The greatest transformations occurred mainly in the gastric and duodenal stages, where low bioactivity indices (IVBA) were shown for resveratrol and caffeic acid (IVBA = 0%). In contrast, the polyphenols gallic acid, chlorogenic acid and quercetin gave rise to their availability in white, green and oolong infusion teas (IVBA > 90%). Furthermore, highly fermented black and pu-erh varieties could be designated as less bioaccessible environments in the duodenum with respect to the tested compounds.


Subject(s)
Polyphenols , Tandem Mass Spectrometry , Antioxidants/analysis , Chemometrics , Chromatography, High Pressure Liquid , Digestion , Polyphenols/analysis
10.
J Chromatogr A ; 1644: 462128, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33845427

ABSTRACT

A simple and efficient low-cost matrix solid phase dispersion (MSPD) extraction assisted by TiO2 nanoparticles and diatomaceous earth has been developed for the extraction of phenolic compounds from grape and grape pomace wastes. Experimental conditions for MSPD extraction were optimized by a factorial design and a surface response methodology. The simultaneous identification and quantification of eight main natural polyphenols (caffeic, p-coumaric, dihydroxybenzoic and gallic acid, rutin, resveratrol, quercetin and catechin) was possible by combining MSPD and capillary liquid chromatography coupled to a diode array detection and a mass simple quadrupole analyzer (cLC-DAD-MS). Good linearity and acceptable LOD (0.05-62 µg·g-1) and LOQ (0.2-207 µg·g-1) were obtained. The quantities of extracted polyphenols were within 2.4 and 333 µg·g-1, with catechin and rutin the most abundant compounds in grape pomace and grape wastes, respectively. Furthermore, considering the prospective uses of the winery bioresidues, the extracts have been characterised in terms of bioactive properties (several antioxidant activities and bacterial inhibition against Staphylococcus aureus, Escherichia coli and Pseudomona aeruginosa) and parameters such as total polyphenol and total flavonoid content. The high antioxidant activity (IC50 5.0 ± 0.4 µg ·g-1 against DPPH radical) and antibacterial activity (2.2 ± 0.3 mg·mL-1) suggests that the methodology developed is efficient, rapid and promising for the extraction of phenolic compounds with potential application as bioactive ingredients in food and cosmetic industries.


Subject(s)
Nanoparticles/chemistry , Polyphenols/analysis , Solid Phase Extraction/methods , Titanium/chemistry , Vitis/chemistry , Animals , Antioxidants/analysis , Chromatography, Liquid , Multivariate Analysis , Plant Extracts/chemistry , Principal Component Analysis , Prospective Studies , Reproducibility of Results , Swine
11.
Food Chem ; 337: 127998, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32919276

ABSTRACT

Grape (Vitis vinifera L. var. Albariño) and mulberry (Morus nigra L.) seeds pomace were characterized in terms of tocopherols, organic acids, phenolic compounds and bioactive properties. Higher contents of tocopherols (28 ± 1 mg/100 g fw) were obtained in mulberry, whilst grape seeds were richer in organic acids (79 ± 4 mg/100 g fw). The phenolic analysis of hydroethanolic extracts characterised grape seeds by catechin oligomers (36.0 ± 0.3 mg/g) and mulberry seeds by ellagic acid derivatives (3.14 ± 0.02 mg/g). Both exhibited high antimicrobial activity against multiresistant Staphylococcus aureus MIC = 5 mg/mL) and no cytotoxicity against carcinogenic and non-tumour primary liver (PLP) cells. Mulberry seeds revealed the strongest inhibition (p < 0.05) against thiobarbituric reactive substances (IC50 = 23 ± 2 µg/mL) and oxidative haemolysis (IC50 at 60 min = 46.0 ± 0.8 µg/mL). Both seed by-products could be exploited for the developing of antioxidant-rich ingredients with health benefits for industrial application.


Subject(s)
Antioxidants/pharmacology , Morus/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Seeds/chemistry , Vitis/embryology , Antioxidants/chemistry , Oxidation-Reduction , Phytochemicals/chemistry , Plant Extracts/chemistry
12.
J Ethnopharmacol ; 265: 113347, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32890715

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The members of the genus Ranunculus have counter-irritating properties and thus, they are traditionally used for treating anti-inflammatory disorders and other skin conditions. Ranunculus macrophyllus Desf. is a wild medicinal plant growing in Algeria and traditionally used to treat some cutaneous skin disorders. AIM: The aim of this study was to characterize the composition of the ethyl acetate and n-butanol extracts from Ranunculus macrophyllus Desf. as well as to elucidate and to compare their effect against acute skin inflammation. Moreover, both the antioxidant activity and the acute toxicity of the plant extracts were also studied. MATERIALS AND METHODS: Spectrophotometric and chromatographic methods were employed to identify and quantify phenolic compounds and triterpenoids from R. macrophyllus Desf. fractions. The antioxidant activity was estimated using the phosphomolebdenum, DPPH, reducing power and ß-carotene bleaching assays. The ethyl acetate and n-butanol extracts were screened for their anti-inflammatory activities using ex-vivo membrane stabilizing assays and in-vivo acute skin inflammation model. RESULTS: Ethyl acetate fraction showed the highest amounts of total phenolic compounds (413 ± 4 µg GAE/mg extract) and triterpenoids (70.4 ± 1.8 µg UAE/mg extract). Rutin, hesperidin, myricetin and kaempferol were the major compounds identified in the different fractions. Ethyl acetate fraction exhibited strong DPPH• radical scavenging ability (IC50 1.6 ± 0.2 µg/mL), high total antioxidant capacity (447 ± 7 µg AAE/mg extract) and reducing power (514 ± 8 µg AAE/mg extract). Ethyl acetate fraction inhibited (73.4 ± 0.3) % of linoleic acid peroxidation. Ethyl acetate and n-butanol fractions did not have any visible toxicity at 2000 mg/kg and presented excellent membrane stabilizing ability. The inhibition of xylene induced ear inflammation was (38 ± 4) % and (46 ± 1) % for RM-B and RM-EA, respectively. CONCLUSIONS: The high content of both phenolic compounds and triterpenoids combined with the remarkable anti-inflammatory effect and antioxidant activity of ethyl acetate and n-butanol extracts from R. macrophyllus Desf. support the wide spread use of this traditional plant on some skin disorders (inflammatory skin disorders).


Subject(s)
Anti-Inflammatory Agents/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Ranunculus/chemistry , 1-Butanol/chemistry , Acetates/chemistry , Algeria , Animals , Anti-Inflammatory Agents/isolation & purification , Antioxidants/isolation & purification , Antioxidants/pharmacology , Disease Models, Animal , Female , Inflammation/drug therapy , Inflammation/pathology , Male , Mice , Phenols/isolation & purification , Plant Extracts/chemistry
13.
Waste Manag ; 96: 15-24, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31376959

ABSTRACT

A solid-liquid extraction method using ethanol-water mixtures was combined with cLC-DAD, LC-MS/MS and chemometric analyses for establishing the optimum extraction conditions of valuable polyphenols from spent coffee grounds. Chlorogenic and p-coumaric acids were the most abundant polyphenols found, ranging from 0.02 to 4.8 mg g-1 and 0.173-0.50 mg g-1, respectively. In addition, total polyphenol content (9-29 mg GAE g-1 DW), total flavonoid content (11-27 mg QE g-1 DW), total antioxidant activity (0.3-7 mg GAE g-1 DW) and free radical scavenging ability (DPPH assay, 64-927 µg extract g-1 at EC50) of obtained extracts were determined. Response surface methodology allowed obtaining predictive models for the extraction of each individual polyphenol. On the other hand, multifactorial ANOVA was used to establish differences between coffee and spent coffee ground extracts. Principal component analysis was also employed to relate antioxidant activities, total polyphenol and total flavonoid contents with both the polyphenols extracted and the residue coffee type. The overall results suggested that spent coffee grounds could be reused as a promising, inexpensive and natural source of bioactive polyphenols with potential industrial applications, thus minimizing the waste disposal and environmental impact.


Subject(s)
Coffee , Polyphenols , Antioxidants , Chromatography, Liquid , Tandem Mass Spectrometry
14.
Food Chem ; 295: 289-299, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31174761

ABSTRACT

A method combining solid-liquid extraction based on ethanolic aqueous solution, cLC-DAD and chemometrics, was performed to extract and quantify polyphenols from citrus peels. LC-MS/MS was also employed for chemical profiling. The effect of extraction variables on the recovery was examined by experimental factorial design. Data were evaluated using multifactorial-ANOVA, response surface analysis and Principal Component Analysis. trans-Ferulic and p-coumaric antioxidants were found in lower quantities (<1.4 mg·g-1) in all peel extracts. Narangin flavonoid was also identified in all samples, while rutin flavonol was determined in the concentration range of 3.3-4.7 mg·g-1. The most abundant polyphenol in the extracts obtained from all evaluated citrus samples was the flavanone hesperidin (280-673 mg·g-1). Furthermore, peel extracts were evaluated in terms of total polyphenol and flavonoid content, total antioxidant activity and DPPH free radical scavenging. The obtained results suggested that evaluated citrus peel by-products could be reused as a source of polyphenols and transformed into value-added products.


Subject(s)
Citrus/chemistry , Polyphenols/analysis , Polyphenols/isolation & purification , Waste Products/analysis , Analysis of Variance , Antioxidants/analysis , Antioxidants/isolation & purification , Chromatography, Liquid , Flavonoids/analysis , Flavonoids/isolation & purification , Hesperidin/analysis , Hesperidin/isolation & purification , Plant Extracts/analysis , Plant Extracts/chemistry , Principal Component Analysis , Tandem Mass Spectrometry
15.
J Chromatogr A ; 1601: 255-265, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31103200

ABSTRACT

A simple and efficient low-cost matrix solid-phase dispersion (MSPD) extraction based on TiO2 nanoparticles (NPs) and diatomaceous earth has been developed for the recovery of phenolic compounds from residual brewing yeast. Experimental conditions for MSPD extraction were optimized by an experimental design approach. A screening factorial design plus replicates at the center point, followed by surface response analysis were used. The simultaneous identification and quantification of eleven main natural polyphenols: caffeic, chlorogenic, p-coumaric, 3,4-dihydroxibenzoic, trans-ferulic and gallic acids, kaempferol, myricetin, naringin, quercetin and rutin, was possible by combining MSPD and capillary liquid chromatography couple to a diode array detection system (cLC-DAD) and liquid chromatography couple to a triple quadrupole analyzer (LC-MS/MS). Moreover, residual brewing yeast extracts were evaluated in terms of DPPH (1,1-diphenyl-2 picrylhydrazyl) free radical scavenging activity. Polyphenol-nanoparticle interaction was studied by UV-vis spectroscopy and electron transmission microscopy (TEM), pointing out a stable interplay that assists phenolic isolation. The extracted polyphenol quantities were within the 3.2-1,500 µg g-1 range, and the high antioxidant activity estimated suggested that developed MSPD is a successful, simple, efficient and rapid method for the extraction and recovery of bioactive phenolic compounds, which promotes the reuse and re-evaluation of brewing yeast agri-food by-products.


Subject(s)
Chemistry Techniques, Analytical/methods , Nanoparticles/chemistry , Phenols/analysis , Saccharomyces cerevisiae/chemistry , Solid Phase Extraction , Titanium/chemistry , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Diatomaceous Earth/chemistry , Phenols/isolation & purification , Polyphenols/analysis , Polyphenols/chemistry , Quercetin/analysis , Tandem Mass Spectrometry
16.
Food Chem ; 267: 246-254, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-29934164

ABSTRACT

A method combining aqueous extraction, reversed-phase high-performance capillary liquid chromatography with photodiode array detection (cLC-DAD) and chemometric tools, was developed to determine phenolic compounds in residual brewing yeast. The effect of temperature, nature of extraction solvent and method for separation of extract solution were studied to optimize the extraction conditions on the basis of total phenolic content (TPC), total flavonoids content (TFC) and antioxidant capacity. Polyphenols were determined by cLC-DAD. Flavonols as rutin and kaempferol, flavonoids as naringin, phenolic acids as gallic acid and antioxidants as trans-ferulic and p-coumaric acids were found and quantified in the brewing residue. Data were subjected to evaluation using multifactor ANOVA and principal component analysis (PCA), both showing that lyophilization pretreatment affects the content of individual polyphenols and that residual brewing yeast contains higher polyphenol amounts than the liquid beer waste. The obtained results suggest that residual brewing yeast could be a source of polyphenols.


Subject(s)
Chromatography, High Pressure Liquid , Polyphenols/analysis , Saccharomyces cerevisiae/metabolism , Antioxidants/chemistry , Chromatography, Reverse-Phase , Flavonoids/analysis , Flavonoids/chemistry , Humidity , Hydrogen-Ion Concentration , Polyphenols/chemistry , Principal Component Analysis , Saccharomyces cerevisiae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL