Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 86(10)2020 05 05.
Article in English | MEDLINE | ID: mdl-32198174

ABSTRACT

Resistance to the "last-resort" antibiotics, such as carbapenems, has led to very few antibiotics being left to treat infections by multidrug-resistant bacteria. Spread of carbapenem resistance (CR) has been well characterized for the clinical environment. However, there is a lack of information about its environmental distribution. Our study reveals that CR is present in a wide range of Gram-negative bacteria in the coastal seawater environment, including four phyla, eight classes, and 30 genera. These bacteria were likely introduced into seawater via stormwater flows. Some CR isolates found here, such as Acinetobacter junii, Acinetobacter johnsonii, Brevundimonas vesicularis, Enterococcus durans, Pseudomonas monteilii, Pseudomonas fulva, and Stenotrophomonas maltophilia, are further relevant to human health. We also describe a novel metallo-ß-lactamase (MBL) for marine Rheinheimera isolates with CR, which has likely been horizontally transferred to Citrobacter freundii or Enterobacter cloacae In contrast, another MBL of the New Delhi type was likely acquired by environmental Variovorax isolates from Escherichia coli, Klebsiella pneumoniae, or Acinetobacter baumannii utilizing a plasmid. Our findings add to the growing body of evidence that the aquatic environment is both a reservoir and a vector for novel CR genes.IMPORTANCE Resistance against the "last-resort" antibiotics of the carbapenem family is often based on the production of carbapenemases, and this has been frequently observed in clinical samples. However, the dissemination of carbapenem resistance (CR) in the environment has been less well explored. Our study shows that CR is commonly found in a range of bacterial taxa in the coastal aquatic environment and can involve the exchange of novel metallo-ß-lactamases from typical environmental bacteria to potential human pathogens or vice versa. The outcomes of this study contribute to a better understanding of how aquatic and marine bacteria can act as reservoirs and vectors for CR outside the clinical setting.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Fresh Water/microbiology , Gram-Negative Bacteria/drug effects , Aquatic Organisms , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/genetics , New South Wales
2.
J Cell Mol Med ; 22(1): 568-575, 2018 01.
Article in English | MEDLINE | ID: mdl-28941150

ABSTRACT

Prognosis in patients suffering from high-risk, refractory and relapsed germ cell tumours (GCT) often comprising of CD30-positive embryonal carcinoma (EC) components remains poor. Thus, novel treatment strategies are warranted. The antibody-drug conjugate (ADC) brentuximab vedotin delivers the potent antimitotic drug monomethyl auristatin E (MMAE) to CD30-expressing tumour cells. After CD30 binding, internalization and intracellular linker cleavage cytotoxic MMAE can efflux and eradicate neighbouring CD30-negative cells. To analyse cytotoxicity and a potential bystander effect of brentuximab vedotin in GCT, we established an in vitro coculture model mimicking GCT of heterogeneous CD30 positivity and measured cell viability, proliferation and apoptosis after exposure to brentuximab vedotin and unbound MMAE by MTS- and flow cytometry-based CFSE/Hoechst assay. CD30 expression being assessed by quantitative RT-PCR and immunohistochemistry was apparent in all EC cell lines with different intensity. Brentuximab vedotin abrogates cell viability of CD30-positive GCT27 EC line exerting marked time-dependent antiproliferative and pro-apoptotic activity. CD30-negative JAR cultured alone barely responds to brentuximab vedotin, while in coculture with GCT27 brentuximab vedotin induces clear dose-dependent cytotoxicity. Cellular proliferation and cell death are significantly enhanced in CD30-negative JAR cocultured with CD30-positive GCT27 compared to JAR cultured alone in proof of substantial bystander activity of brentuximab vedotin in CD30-negative GCT. We present first evidence that in an in vitro model mimicking GCT of heterogeneous histology, brentuximab vedotin exerts potent antiproliferative and pro-apoptotic activity against both CD30-positive as well as CD30-negative GCT subsets. Our results strongly support translational efforts to evaluate clinical efficacy of brentuximab vedotin in high-risk GCT of heterogeneous CD30 positivity.


Subject(s)
Apoptosis/drug effects , Immunoconjugates/pharmacology , Ki-1 Antigen/metabolism , Neoplasms, Germ Cell and Embryonal/pathology , Brentuximab Vedotin , Bystander Effect/drug effects , Cell Count , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , Coculture Techniques , Humans , Ki-1 Antigen/genetics , Oligopeptides/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
4.
Adv Biochem Eng Biotechnol ; 130: 131-62, 2013.
Article in English | MEDLINE | ID: mdl-23455489

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment option in hematopoietic disorders, immunodeficiencies and leukemia. To date graft-versus-host disease (GvHD) represents a life-threatening complication even if associated with beneficial antileukemic reactivity. GvHD is the clinical manifestation of donor cells reacting against host tissue. Because of their ability to facilitate endogenous repair and to attenuate inflammation, MSC have evolved as a highly attractive cellular therapeutic in allo-HSCT. Here we report on the clinical experience in the use of MSC to enhance engraftment and prevent and treat acute and chronic GvHD. In early clinical trials, MSC have shown considerable benefit in the setting of manifest GvHD. These encouraging results warrant further exploration.

SELECTION OF CITATIONS
SEARCH DETAIL