Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806020

ABSTRACT

To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.


Subject(s)
Gluconeogenesis , Proteome , TRPV Cation Channels , Animals , Gene Expression , Gluconeogenesis/genetics , Glucose/metabolism , Glycogen/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteome/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
2.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2415-2427, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28943398

ABSTRACT

Transient receptor potential (TRP) channels are known to regulate energy metabolism, and TRPM8 has become an interesting player in this context. Here we demonstrate the role of the cold sensor TRPM8 in the regulation of clock gene and clock controlled genes in brown adipose tissue (BAT). We investigated TrpM8 temporal profile in the eyes, suprachiasmatic nucleus and BAT; only BAT showed temporal variation of TrpM8 transcripts. Eyes from mice lacking TRPM8 lost the temporal profile of Per1 in LD cycle. This alteration in the ocular circadian physiology may explain the delay in the onset of locomotor activity in response to light pulse, as compared to wild type animals (WT). Brown adipocytes from TrpM8 KO mice exhibited a larger multilocularity in comparison to WT or TrpV1 KO mice. In addition, Ucp1 and UCP1 expression was significantly reduced in TrpM8 KO mice in comparison to WT mice. Regarding circadian components, the expression of Per1, Per2, Bmal1, Pparα, and Pparß oscillated in WT mice kept in LD, whereas in the absence of TRPM8 the expression of clock genes was reduced in amplitude and lack temporal oscillation. Thus, our results reveal new roles for TRPM8 channel: it participates in the regulation of clock and clock-controlled genes in the eyes and BAT, and in BAT thermogenesis. Since disruption of the clock machinery has been associated with many metabolic disorders, the pharmacological modulation of TRPM8 channel may become a promising therapeutic target to counterbalance weight gain, through increased thermogenesis, energy expenditure, and clock gene activation.


Subject(s)
Adipose Tissue, Brown/metabolism , Circadian Rhythm/genetics , TRPM Cation Channels/genetics , Thermogenesis/genetics , Adipose Tissue, Brown/growth & development , Animals , Energy Metabolism/genetics , Eye/growth & development , Eye/metabolism , Mice , Mice, Knockout , Thermosensing/genetics
3.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 324-335, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27864077

ABSTRACT

Transient receptor potential (TRPs) channels are involved in thermogenesis, and temperature and energy balance control. Mice lacking TrpV1 become more obese and develop insulin resistance when fed with high fat diet; however, a relationship between metabolic disorders, TRP channels, and clock genes is still unknown. Based on this, we hypothesized that TRPV1 channels would be involved in the synchronization of clock genes in the peripheral tissues. To address this question, we used wild type (WT) and TrpV1 knockout (KO) mice kept in constant darkness (DD) or in light-dark cycle (LD). In WT mouse brown adipose tissue (BAT), TrpV1 oscillated with higher expression at scotophase, Per1 and Per2 showed the same profile, and Bmal1 transcript only oscillated in DD. Interestingly, the oscillatory profile of these clock genes was abolished in TrpV1 KO mice. WT mouse Ucp1 was upregulated in LD as compared to DD, showing no temporal variation; mice lacking TrpV1 showed Ucp1 oscillation with a peak at the photophase. Remarkably, TrpV1 KO mice displayed less total activity than WT only when submitted to LD. We provide evidence that TRPV1 is an important modulator of BAT clock gene oscillations. Therefore, temperature and/or light-dependent regulation of TRPV1 activity might provide novel pharmacological approaches to treat metabolic disorders.


Subject(s)
Adipose Tissue, Brown/metabolism , Darkness , Light , Photoperiod , TRPV Cation Channels/physiology , Animals , Gene Expression Profiling , Locomotion , Mice , Mice, Inbred C57BL , Mice, Knockout , TRPV Cation Channels/genetics , Uncoupling Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL