Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
J Biomech Eng ; 146(10)2024 10 01.
Article in English | MEDLINE | ID: mdl-38668718

ABSTRACT

Creating the optimal environment for effective and long term osseointegration is a heavily researched and sought-after design criteria for orthopedic implants. A validated multimaterial finite element (FE) model was developed to replicate and understand the results of an experimental in vivo push-out osseointegration model. The FE model results closely predicted global force (at 0.5 mm) and stiffness for the 50-90% porous implants with an r2 of 0.97 and 0.98, respectively. In addition, the FE global force at 0.5 mm showed a correlation to the maximum experimental forces with an r2 of 0.90. The highest porosity implants (80-90%) showed lower stiffnesses and more equitable load sharing but also failed at lower a global force level than the low porosity implants (50-70%). The lower strength of the high porosity implants caused premature plastic deformation of the implant itself during loading as well as significant deformations in the ingrown and surrounding bone, resulting in lower overall osseointegration strength, consistent with experimental measurements. The lower porosity implants showed a balance of sufficient bony ingrowth to support osseointegration strength coupled with implant mechanical properties to circumvent significant implant plasticity and collapse under the loading conditions. Together, the experimental and finite element modeling results support an optimal porosity in the range of 60-70% for maximizing osseointegration with current structure and loading.


Subject(s)
Finite Element Analysis , Materials Testing , Osseointegration , Porosity , Prostheses and Implants , Mechanical Phenomena , Animals , Metals/chemistry , Stress, Mechanical
2.
Article in English | MEDLINE | ID: mdl-38469869

ABSTRACT

There is a significant need for models that can capture the mechanical behavior of complex porous lattice architectures produced by 3D printing. The free boundary effect is an experimentally observed behavior of lattice architectures including the gyroid triply periodic minimal surface where the number of unit cell repeats has been shown to influence the mechanical performance of the lattice. The purpose of this study is to use finite element modeling to investigate how architecture porosity, unit cell size, and sample size dictate mechanical behavior. Samples with varying porosity and increasing number of unit cells (relative to sample size) were modeled under an axial compressive load to determine the effective modulus. The finite element model captured the free boundary effect and captured experimental trends in the structure's modulus. The findings of this study show that samples with higher porosity are more susceptible to the impact of the free boundary effect and in some samples, the modulus can be 20% smaller in samples with smaller numbers of unit cell repeats within a given sample boundary. The outcomes from this study provide a deeper understanding of the gyroid structure and the implications of design choices including porosity, unit cell size, and overall sample size.

3.
Clin Biomech (Bristol, Avon) ; 111: 106135, 2024 01.
Article in English | MEDLINE | ID: mdl-37948989

ABSTRACT

BACKGROUND: The purpose of this study is to develop a simple and reproducible bending model that is compatible with a wide range of orthopaedic fixation devices and 3D printed spacers. METHODS: A robust 4-point bending model was constructed by securing sawbones blocks with different orthopaedic fixation device constructs. Stress strain curves derived from a fundamental mechanics model were used to assess the effect of bone density, type of hardware (staple vs intramedullary beam), the use of dynamic compression, orientation of staples (dorsal vs plantar), and the use of 3D printed titanium spacers. FINDINGS: The high throughput 4-point bending model is simple enough that the methods can be easily repeated to assess a wide range of fixation methods, while complex enough to provide clinically relevant information. INTERPRETATIONS: It is recommended that this model is used to assess a large initial set of fixation methods in direct and straightforward comparisons.


Subject(s)
Fracture Fixation, Intramedullary , Orthopedics , Humans , Fracture Fixation, Internal , Bone Plates , Biomechanical Phenomena
4.
JOR Spine ; 6(3): e1268, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37780834

ABSTRACT

Background: The use of intervertebral cages within the interbody fusion setting is ubiquitous. Synthetic cages are predominantly manufactured using materials such as Ti and PEEK. With the advent of additive manufacturing techniques, it is now possible to spatially vary complex 3D geometric features within interbody devices, enabling the devices to match the stiffness of native tissue and better promote bony integration. To date, the impact of surface porosity of additively manufactured Ti interbody cages on fusion outcomes has not been investigated. Thus, the objective of this work was to determine the effect of implant endplate surface and implant body architecture of additive manufactured lattice structure titanium interbody cages on bony fusion. Methods: Biomechanical, microcomputed tomography, static and dynamic histomorphometry, and histopathology analyses were performed on twelve functional spine units obtained from six sheep randomly allocated to body lattice or surface lattice groups. Results: Nondestructive kinematic testing, microcomputed tomography analysis, and histomorphometry analyses of the functional spine units revealed positive fusion outcomes in both groups. These data revealed similar results in both groups, with the exception of bone-in-contact analysis, which revealed significantly improved bone-in-contact values in the body lattice group compared to the surface lattice group. Conclusion: Both additively manufactured porous titanium cage designs resulted in increased fusion outcomes as compared to PEEK interbody cage designs as illustrated by the nondestructive kinematic motion testing, static and dynamic histomorphometry, microcomputed tomography, and histopathology analyses. While both cages provided for similar functional outcomes, these data suggest boney contact with an interbody cage may be impacted by the nature of implant porosity adjacent to the vertebral endplates.

5.
Data Brief ; 49: 109396, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600123

ABSTRACT

Additive manufacturing has provided the ability to manufacture complex structures using a wide variety of materials and geometries. Structures such as triply periodic minimal surface (TPMS) lattices have been incorporated into products across many fields due to their unique combinations of mechanical, geometric, and physical properties. Yet, the near limitless possibility of combining geometry and material into these lattices leaves much to be discovered. This article provides a dataset of experimentally gathered tensile stress-strain curves and measured porosity values for 389 unique gyroid lattice structures manufactured using vat photopolymerization 3D printing. The lattice samples were printed from one of twenty different photopolymer materials available from either Formlabs, LOCTITE AM, or ETEC that range from strong and brittle to elastic and ductile and were printed on commercially available 3D printers, specifically the Formlabs Form2, Prusa SL1, and ETEC Envision One cDLM Mechanical. The stress-strain curves were recorded with an MTS Criterion C43.504 mechanical testing apparatus and following ASTM standards, and the void fraction or "porosity" of each lattice was measured using a calibrated scale. This data serves as a valuable resource for use in the development of novel printing materials and lattice geometries and provides insight into the influence of photopolymer material properties on the printability, geometric accuracy, and mechanical performance of 3D printed lattice structures. The data described in this article was used to train a machine learning model capable of predicting mechanical properties of 3D printed gyroid lattices based on the base mechanical properties of the printing material and porosity of the lattice in the research article [1].

6.
J Biomech Eng ; 145(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37216313

ABSTRACT

Pelvic organ prolapse (POP) is the herniation of the pelvic organs into the vaginal space, resulting in the feeling of a bulge and organ dysfunction. Treatment of POP often involves repositioning the organs using a polypropylene mesh, which has recently been found to have relatively high rates of complications. Complications have been shown to be related to stiffness mismatches between the vagina and polypropylene, and unstable knit patterns resulting in mesh deformations with mechanical loading. To overcome these limitations, we have three-dimensional (3D)-printed a porous, monofilament membrane composed of relatively soft polycarbonate-urethane (PCU) with a stable geometry. PCU was chosen for its tunable properties as it is comprised of both hard and soft segments. The bulk mechanical properties of PCU were first characterized by testing dogbone samples, demonstrating the dependence of PCU mechanical properties on its measurement environment and the effect of print pathing. The pore dimensions and load-relative elongation response of the 3D-printed PCU membranes under monotonic tensile loading were then characterized. Finally, a fatigue study was performed on the 3D-printed membrane to evaluate durability, showing a similar fatigue resistance with a commercial synthetic mesh and hence its potential as a replacement.


Subject(s)
Pelvic Organ Prolapse , Urethane , Female , Humans , Porosity , Polypropylenes , Materials Testing , Vagina
7.
ACS Appl Mater Interfaces ; 14(34): 38436-38447, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35977091

ABSTRACT

Poly(propylene fumarate) star polymers photochemically 3D printed with degradable thiol cross-linkers yielded highly tunable biodegradable polymeric materials. Tailoring the alkene:thiol ratio (5:1, 10:1, 20:1 and 30:1) and thus the cross-link density within the PPF star systems yielded a wide variation of both the mechanical and degradation properties of the printed materials. Fundamental trends were established between the polymer network cross-link density, glass transition temperature, and tensile and thermomechanical properties of the materials. The tensile properties of the PPF star-based systems were compared to commercial state-of-the-art non-degradable polymer resins. The thiolene-cross-linked materials are fully degradable and possess properties over a wide range of mechanical properties relevant to regenerative medicine applications.

8.
Materials (Basel) ; 15(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35888273

ABSTRACT

Corrosion of medical implants is a possible failure mode via induced local inflammatory effects, systemic deposition and corrosion related mechanical failure. Cyclic potentiodynamic polarisation (CPP) testing was utilized to evaluate the effect of increased porosity (60% and 80%) and decreased wall thickness in gyroid lattice structures on the electrochemical behaviour of LPBF Ti6Al4V structures. The use of CPP allowed for the landmarks of breakdown potential, resting potential and vertex potential to be analysed, as well as facilitating the construction of Tafel plots and qualitative Goldberg analysis. The results indicated that 60% gyroid samples were most susceptible to the onset of pitting corrosion when compared to 80% gyroid and solid samples. This was shown through decreased breakdown and vertex potentials and were found to correlate to increased lattice surface area to void volume ratio. Tafel plots indicated that despite the earlier onset of pitting corrosion, both gyroid test groups displayed lower rates of corrosion per year, indicating a lower severity of corrosion. This study highlighted inherent tradeoffs between lattice optimisation and corrosion behaviour with a potential parabolic link between void volume, surface area and corrosion being identified. This potential link is supported by 60% gyroid samples having the lowest breakdown potentials, but investigation into other porosity ranges is suggested to support the hypothesis. All 3D printed materials studied here showed breakdown potentials higher than ASTM F2129's suggestion of 800 mV for evaluation within the physiological environment, indicating that under static conditions pitting and crevice corrosion should not initiate within the body.

9.
J Mech Behav Biomed Mater ; 130: 105208, 2022 06.
Article in English | MEDLINE | ID: mdl-35395449

ABSTRACT

3D printing is a critical method for manufacturing metallic implants as it enables direct fabrication of intricate geometries and porous structures inaccessible to other manufacturing methods. Some common 3D printed porous structures are strut based (e.g. octet truss), triply periodic minimal surfaces (TPMS) (e.g. gyroid) or randomized (e.g. stochastic). When designed to be on the surface of bone interfacing implants, the surface porous region impacts short-term adhesion and friction, ultimately affecting implant stability prior to and during long-term osseointegration. In many orthopedic procedures, expulsion resistance is an essential design requirement, to prevent the risk of the implant migrating from the implantation site. While expulsion tests are universal, they are a poorly understood method to examine the bone-implant interface in determining the performance of an orthopedic implant. In this foundational study, we examine the expulsion behavior of metallic samples in synthetic Sawbone with systematically varied surface topography at increasing applied normal forces. The applied normal force and size of the sample were shown to have the strongest influence on expulsion force followed by surface structure. Compared to a polished sample control, certain 3D printed surface structures are up to 10x more expulsion resistant and should be considered in implants where prevention of implant migration before and during osseointegration is critical. Nonlinear relationships were discovered that reveal "crossover" in expulsion resistance as a function of applied load revealing that the ranking of the relative expulsion resistance of different samples can depend on the normal force selected. This new fundamental understanding has broad implications on both the design and potential standardized regulatory testing of textured orthopedic implants with tailored topologies.


Subject(s)
Prostheses and Implants , Titanium , Bone-Implant Interface , Osseointegration , Porosity , Printing, Three-Dimensional , Surface Properties , Titanium/chemistry
10.
Foot Ankle Int ; 43(6): 750-761, 2022 06.
Article in English | MEDLINE | ID: mdl-35209733

ABSTRACT

BACKGROUND: Treating critically sized defects (CSDs) of bone remains a significant challenge in foot and ankle surgery. Custom 3D-printed implants are being offered to a small but growing subset of patients as a salvage procedure in lieu of traditional alternates such as structural allografts after the patient has failed prior procedures. The long-term outcomes of 3D-printed implants are still unknown and understudied because of the limited number of cases and short follow-up durations. The purpose of this study was to evaluate the outcomes of patients who received custom 3D-printed implants to treat CSDs of the foot and ankle in an attempt to aid surgeons in selecting appropriate surgical candidates. METHODS: This was a retrospective study to assess surgical outcomes of patients who underwent implantation of a custom 3D-printed implant made with medical-grade titanium alloy powder (Ti-6Al-4V) to treat CSDs of the foot and ankle between June 1, 2014, and September 30, 2019. All patients had failed previous nonoperative or operative management before proceeding with treatment with a custom 3D-printed implant. Univariate and multivariate odds ratios (ORs) of a secondary surgery and implant removal were calculated for perioperative variables. RESULTS: There were 39 cases of patients who received a custom 3D-printed implant with at least 1 year of follow-up. The mean follow-up time was 27.0 (12-74) months. Thirteen of 39 cases (33.3%) required a secondary surgery and 10 of 39 (25.6%) required removal of the implant because of septic nonunion (6/10) or aseptic nonunion (4/10). The mean time to secondary surgery was 10 months (1-22). Multivariate logistic regression revealed that patients with neuropathy were more likely to require a secondary surgery with an OR of 5.76 (P = .03). CONCLUSION: This study demonstrated that 74% of patients who received a custom 3D-printed implant for CSDs did not require as subsequent surgery (minimum of 1-year follow-up). Neuropathy was significantly associated with the need for a secondary surgery. This is the largest series to date demonstrating the efficacy of 3D-printed custom titanium implants. As the number of cases using patient-specific 3D-printed titanium implant increases, larger cohorts of patients should be studied to identify other high-risk groups and possible interventions to improve surgical outcomes. LEVEL OF EVIDENCE: Level IV, case series.


Subject(s)
Ankle , Titanium , Humans , Porosity , Printing, Three-Dimensional , Retrospective Studies
11.
Int J Comput Assist Radiol Surg ; 17(3): 541-551, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35099684

ABSTRACT

PURPOSE: Reconstructive surgeries to treat a number of musculoskeletal conditions, from arthritis to severe trauma, involve implant placement and reconstructive planning components. Anatomically matched 3D-printed implants are becoming increasingly patient-specific; however, the preoperative planning and design process requires several hours of manual effort from highly trained engineers and clinicians. Our work mitigates this problem by proposing algorithms for the automatic re-alignment of unhealthy anatomies, leading to more efficient, affordable, and scalable treatment solutions. METHODS: Our solution combines global alignment techniques such as iterative closest points with novel joint space refinement algorithms. The latter is achieved by a low-dimensional characterization of the joint space, computed from the distribution of the distance between adjacent points in a joint. RESULTS: Experimental validation is presented on real clinical data from human subjects. Compared with ground truth healthy anatomies, our algorithms can reduce misalignment errors by 22% in translation and 19% in rotation for the full foot-and-ankle and 37% in translation and 39% in rotation for the hindfoot only, achieving a performance comparable to expert technicians. CONCLUSION: Our methods and histogram-based metric allow for automatic and unsupervised alignment of anatomies along with techniques for global alignment of complex arrangements such as the foot-and-ankle system, a major step toward a fully automated and data-driven re-positioning, designing, and diagnosing tool.


Subject(s)
Plastic Surgery Procedures , Tomography, X-Ray Computed , Algorithms , Automation , Humans , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
12.
Sci Total Environ ; 814: 152460, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34973311

ABSTRACT

Microplastics (MPs) have become an emerging new pollutant of rising concern due to the exponential growth of plastics in consumer products. Most MP and nanoplastic pollution comes from the fragmentation of plastics through mechanical stress, chemical reactions and biological degradation that occurs during use and after disposal. Models predicting the generation and behavior of MP in the environment are developing, however there is lack of data to predict the rates of MP generation as a function of the abrasive forces. A method to deliver scalable, quantitative release rates of MPs during mechanical stress throughout a plastic's life cycle (e.g., sanding, chewing, river and ocean disposal) is described. A custom abrasion machine was built with features to provide data to calculate power input. The generation rate of MPs through abrasion was tested for the following 3D printed polymers: polylactic acid (PLA), polycarbonate (PC), thermoplastic polyurethane 85A (TPU), polyethylene glycol terephthalate (PETG), high-impact polystyrene (HIPS), and nylon. Each material underwent tensile strength material tests to identify which mechanical properties drive their abrasion rate. Abrasion rate was not observed to correlate to macroscopic mechanic properties. Results indicate that the order of abrasion from most to least were HIPS, nylon, PC, PLA, PETG, and then TPU. This study will help comprehend and provide data to understand generation rates of MPs from consumer plastic products and macro-plastic debris. This will be instrumental in helping to better understand the release of MPs and nanoplastics into the environment and to provide data for fate and transport models, especially in order to predict the amount of plastic entering water systems. MP generation rates and power inputs can be correlated with each plastic's use to inform which release the most MPs and how to better change these products in order to reduce pollution in water sources.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Environmental Pollution , Plastics , Polymers , Water Pollutants, Chemical/analysis
13.
Biomaterials ; 279: 121206, 2021 12.
Article in English | MEDLINE | ID: mdl-34715639

ABSTRACT

Optimization of porous titanium alloy scaffolds designed for orthopedic implants requires balancing mechanical properties and osseointegrative performance. The tradeoff between scaffold porosity and the stiffness/strength must be optimized towards the goal to improve long term load sharing while simultaneously promoting osseointegration. Osseointegration into porous titanium implants covering a wide range of porosity (0%-90%) and manufactured by laser powder bed fusion (LPBF) was evaluated with an established ovine cortical and cancellous defect model. Direct apposition and remodeling of woven bone was observed at the implant surface, as well as bone formation within the interstices of the pores. A linear relationship was observed between the porosity and benchtop mechanical properties of the scaffolds, while a non-linear relationship was observed between porosity and the ex vivo cortical bone-implant interfacial shear strength. Our study supports the hypothesis of porosity dependent performance tradeoffs, and establishes generalized relationships between porosity and performance for design of topological optimized implants for osseointegration. These results are widely applicable for orthopedic implant design for arthroplasty components, arthrodesis devices such as spinal interbody fusion implants, and patient matched implants for treatment of large bone defects.


Subject(s)
Osseointegration , Prostheses and Implants , Alloys , Animals , Humans , Porosity , Sheep , Titanium
14.
J Mech Behav Biomed Mater ; 121: 104650, 2021 09.
Article in English | MEDLINE | ID: mdl-34166872

ABSTRACT

The recent growth of polymer 3D-printing has brought innovation to the medical implant field. Implants with complex porous structures can be fabricated by printing to tune mechanical behavior and enable diffusion, consequently improving integration with tissues in the human body. Poly(L-lactide-co-ε-caprolactone) (PLCL) is a 3D-printable polymer that possess a wide range of possible mechanical properties depending on its monomer composition. It is often used in biomedical applications requiring degradability. In this study, we explore 1) the effect of annealing 3D-printed PLCL and 2) the degradation profile of both annealed and unannealed 3D-printed PLCL scaffolds. The degraded samples were characterized for its molecular weight, mass loss, microstructure, and mechanical properties. By annealing the 3D-printed PLCL, we reveal the structure-property relationship of PLCL. Crystallization was found to be a crucial factor in the resulting mechanical properties, increasing stiffness significantly. The subsequent degradation study revealed that there was no significant difference brought about by pre-annealing the scaffolds. The scaffolds were found to maintain their mechanical properties until up to 8 weeks, at which point the scaffolds reached a critical molecular weight and lost their mechanical integrity.


Subject(s)
Polyesters , Polymers , Caproates , Dioxanes , Humans , Lactones , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
15.
Wound Repair Regen ; 29(6): 1035-1050, 2021 11.
Article in English | MEDLINE | ID: mdl-34129714

ABSTRACT

Dermal scarring from motor vehicle accidents, severe burns, military blasts, etc. is a major problem affecting over 80 million people worldwide annually, many of whom suffer from debilitating hypertrophic scar contractures. These stiff, shrunken scars limit mobility, impact quality of life, and cost millions of dollars each year in surgical treatment and physical therapy. Current tissue engineered scaffolds have mechanical properties akin to unwounded skin, but these collagen-based scaffolds rapidly degrade over 2 months, premature to dampen contracture occurring 6-12 months after injury. This study demonstrates a tissue engineered scaffold can be manufactured from a slow-degrading viscoelastic copolymer, poly(ι-lactide-co-ε-caprolactone), with physical and mechanical characteristics to promote tissue ingrowth and support skin-grafts. Copolymers were synthesized via ring-opening polymerization. Solvent casting/particulate leaching was used to manufacture 3D porous scaffolds by mixing copolymers with particles in an organic solvent followed by casting into molds and subsequent particle leaching with water. Scaffolds characterized through SEM, micro-CT, and tensile testing confirmed the required thickness, pore size, porosity, modulus, and strength for promoting skin-graft bioincorporation and dampening fibrosis in vivo. Scaffolds were Oxygen Plasma Treatment and collagen coated to encourage cellular proliferation. Porosity ranging from 70% to 90% was investigated in a subcutaneous murine model and found to have no clinical effect on tissue ingrowth. A swine full-thickness skin wound model confirmed through histology and Computer Planimetry that scaffolds promote skin-graft survival, with or without collagen coating, with equal safety and efficacy as a commercially available tissue engineered scaffold. This study validates a scalable method to create poly(ι-lactide-co-ε-caprolactone) scaffolds with appropriate characteristics and confirms in mouse and swine wound models that the scaffolds are safe and effective at supporting skin-grafts. The results of this study have brought us closer towards developing an alternative technology that supports skin grafts with the potential to investigate long-term hypertrophic scar contractures.


Subject(s)
Skin Transplantation , Tissue Engineering , Animals , Caproates , Collagen , Lactones , Mice , Polyesters , Quality of Life , Swine , Tissue Scaffolds , Wound Healing
16.
Chem Rev ; 121(18): 11238-11304, 2021 09 22.
Article in English | MEDLINE | ID: mdl-33856196

ABSTRACT

Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.


Subject(s)
Biocompatible Materials , Tissue Scaffolds , Polymers , Regenerative Medicine , Tissue Engineering/methods
17.
J Biomed Mater Res A ; 109(10): 1792-1802, 2021 10.
Article in English | MEDLINE | ID: mdl-33754494

ABSTRACT

Critical-sized defects remain a significant challenge in orthopaedics. 3D printed scaffolds are a promising treatment but are still limited due to inconsistent osseous integration. The goal of the study is to understand how changing the surface roughness of 3D printed titanium either by surface treatment or artificially printing rough topography impacts the mechanical and biological properties of 3D printed titanium. Titanium tensile samples and discs were printed via laser powder bed fusion. Roughness was manipulated by post-processing printed samples or by directly printing rough features. Experimental groups in order of increasing surface roughness were Polished, Blasted, As Built, Sprouts, and Rough Sprouts. Tensile behavior of samples showed reduced strength with increasing surface roughness. MC3T3 pre-osteoblasts were seeded on discs and analyzed for cellular proliferation, differentiation, and matrix deposition at 0, 2, and 4 weeks. Printing roughness diminished mechanical properties such as tensile strength and ductility without clear benefit to cell growth. Roughness features were printed on mesoscale, unlike samples in literature in which roughness on microscale demonstrated an increase in cell activity. The data suggest that printing artificial roughness on titanium scaffold is not an effective strategy to promote osseous integration.


Subject(s)
Osteoblasts/cytology , Printing, Three-Dimensional , Titanium/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Alloys/pharmacology , Animals , Cell Line , Collagen/metabolism , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/ultrastructure , Osteocalcin , Stress, Mechanical , Surface Properties , Tensile Strength
18.
Biomater Sci ; 9(8): 3100-3111, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33690768

ABSTRACT

The current use of implantable and indwelling medical is limited due to potential microbial colonization leading to severe ailments. The aim of this work is to develop bioactive polymers that can be customized based on patient needs and help prevent bacterial infection. Potential benefits of additive manufacturing technology are integrated with the antimicrobial properties of nitric oxide (NO) to develop NO-releasing biocompatible polymer interfaces for addressing bacterial infections. Using filament-based additive manufacturing and polycarbonateurethane-silicone (PCU-Sil) a range of films possessing unique porosities (Disk-60, Disk-40, solid, capped) were fabricated. The films were impregnated with S-nitroso-N-acetyl-penicillamine (SNAP) using a solvent-swelling process. The Disk-60 porous films had the greatest amount of SNAP (19.59 wt%) as measured by UV-vis spectroscopy. Scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed an even distribution of SNAP throughout the polymer. The films exhibited structure-based tunable NO-release at physiological levels ranging from 7-14 days for solid and porous films, as measured by chemiluminescence. The antibacterial efficacy of the films was studied against Staphylococcus aureus using 24 h in vitro bacterial adhesion assay. The results demonstrated a >99% reduction of viable bacteria on the surface of all the NO-releasing films compared to unmodified PCU-Sil controls. The combination of 3D-printing technology with NO-releasing properties represents a promising technique to develop customized medical devices (such as 3D-scaffolds, catheters, etc.) with distinct NO-release levels that can provide antimicrobial properties and enhanced biocompatibility.


Subject(s)
Anti-Infective Agents , Nitric Oxide , Anti-Bacterial Agents/pharmacology , Humans , S-Nitroso-N-Acetylpenicillamine/pharmacology , Staphylococcus aureus
19.
J Mech Behav Biomed Mater ; 116: 104380, 2021 04.
Article in English | MEDLINE | ID: mdl-33588248

ABSTRACT

Despite the innate ability for bone to remodel and repair, its regeneration has a limit. In these cases of critically sized bone defects (CSBD), the bone deficit must be repaired using reconstructive techniques that support immediate load bearing and encourage bone bridging across the defect. High-strength porous titanium implants offer a solution for treatment of CSBD in which the scaffold can support physiological loads, provide a matrix to guide ingrowth, and carry graft materials and/or biologics. Fabrication of titanium meta-materials via additive manufacturing (AM) has unlocked the potential to modulate mechanical and biological performance to achieve a combination of properties previously unachievable. Meta-material scaffolds with topology based on triply periodic minimal surfaces (TPMS) have gained increasing interest for use in biomedical applications due to their bioinspired nature. Despite enthusiasm for TPMS-based titanium scaffolds due to their high strength to stiffness ratio, high permeability, and curvature similar to trabecular bone, there is little preclinical evidence to support their in vivo response in bone. The present study sought to evaluate the performance of gyroid-sheet titanium scaffolds produced via AM to repair a critically size femoral cortical bone defect in rats. Empty gyroid-sheet scaffolds were shown to repair segmental defects with up to 38% of torsional strength and 54% torsional stiffness of the intact femur (control) at 12-weeks. Gyroid-sheet scaffolds carrying recombinant bone morphogenic protein-2 demonstrated bridging bone growth across the length of the defect, with torsional strength and stiffness superior to that of the intact controls.


Subject(s)
Femur , Titanium , Animals , Bone and Bones , Porosity , Prostheses and Implants , Rats , Tissue Scaffolds
20.
Adv Healthc Mater ; 10(2): e2001058, 2021 01.
Article in English | MEDLINE | ID: mdl-33111508

ABSTRACT

Bioresorbable bone adhesives may provide remarkable clinical solutions in areas ranging from fixation and osseointegration of permanent implants to the direct healing and fusion of bones without permanent fixation hardware. Mechanical properties of bone adhesives are critical for their successful application in vivo. Reinforcement of a tetracalcium phosphate-phosphoserine bone adhesive is investigated using three degradable reinforcement strategies: poly(lactic-co-glycolic) (PLGA) fibers, PLGA sutures, and chitosan lactate. All three approaches lead to higher compressive strengths of the material and better fatigue performance. Reinforcement with PLGA fibers and chitosan lactate results in a 100% probability of survival of samples at 20 MPa maximum compressive stress level, which is almost ten times higher compared to compressive loads observed in the intervertebral discs of the spine in vivo. High adhesive shear strength of 5.1 MPa is achieved for fiber-reinforced bone adhesive by tuning the surface architecture of titanium samples. Finally, biological and biomechanical performance of the fiber-reinforced adhesive is evaluated in a rabbit distal femur osteotomy model, showing the potential of the bone adhesive for clinical use.


Subject(s)
Absorbable Implants , Adhesives , Animals , Fatigue , Lactic Acid , Materials Testing , Minerals , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...