Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
PLoS Pathog ; 20(4): e1012175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640117

ABSTRACT

Prions or prion-like aggregates such as those composed of PrP, α-synuclein, and tau are key features of proteinopathies such as prion, Parkinson's and Alzheimer's diseases, respectively. Their presence on solid surfaces may be biohazardous under some circumstances. PrP prions bound to solids are detectable by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays if the solids can be immersed in assay wells or the prions transferred to pads. Here we show that prion-like seeds can remain detectable on steel wires for at least a year, or even after enzymatic cleaning and sterilization. We also show that contamination of larger objects with pathological seeds of α-synuclein, tau, and PrP can be detected by simply assaying a sampling medium that has been transiently applied to the surface. Human α-synuclein seeds in dementia with Lewy bodies brain tissue were detected by α-synuclein RT-QuIC after drying of tissue dilutions with concentrations as low as 10-6 onto stainless steel. Tau RT-QuIC detected tau seeding activity on steel exposed to Alzheimer's disease brain tissue diluted as much as a billion fold. Prion RT-QuIC assays detected seeding activity on plates exposed to brain dilutions as extreme as 10-5-10-8 from prion-affected humans, sheep, cattle and cervids. Sampling medium collected from surgical instruments used in necropsies of sporadic Creutzfeldt-Jakob disease-infected transgenic mice was positive down to 10-6 dilution. Sensitivity for prion detection was not sacrificed by omitting the recombinant PrP substrate from the sampling medium during its application to a surface and subsequent storage as long as the substrate was added prior to performing the assay reaction. Our findings demonstrate practical prototypic surface RT-QuIC protocols for the highly sensitive detection of pathologic seeds of α-synuclein, tau, and PrP on solid objects.


Subject(s)
Prion Proteins , alpha-Synuclein , tau Proteins , tau Proteins/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/analysis , Humans , Prion Proteins/metabolism , Animals , Mice , Brain/metabolism , Brain/pathology , Prions/metabolism , Lewy Body Disease/metabolism
2.
Brain ; 147(4): 1539-1552, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38000783

ABSTRACT

It is increasingly evident that the association of glycans with the prion protein (PrP), a major post-translational modification, significantly impacts the pathogenesis of prion diseases. A recent bioassay study has provided evidence that the presence of PrP glycans decreases spongiform degeneration and disease-related PrP (PrPD) deposition in a murine model. We challenged (PRNPN181Q/197Q) transgenic (Tg) mice expressing glycan-free human PrP (TgGlyc-), with isolates from sporadic Creutzfeldt-Jakob disease subtype MM2 (sCJDMM2), sporadic fatal insomnia and familial fatal insomnia, three human prion diseases that are distinct but share histotypic and PrPD features. TgGlyc- mice accurately replicated the basic histotypic features associated with the three diseases but the transmission was characterized by high attack rates, shortened incubation periods and a greatly increased severity of the histopathology, including the presence of up to 40 times higher quantities of PrPD that formed prominent deposits. Although the engineered protease-resistant PrPD shared at least some features of the secondary structure and the presence of the anchorless PrPD variant with the wild-type PrPD, it exhibited different density gradient profiles of the PrPD aggregates and a higher stability index. The severity of the histopathological features including PrP deposition appeared to be related to the incubation period duration. These findings are clearly consistent with the protective role of the PrP glycans but also emphasize the complexity of the conformational changes that impact PrPD following glycan knockout. Future studies will determine whether these features apply broadly to other human prion diseases or are PrPD-type dependent.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , Mice , Animals , Prion Proteins/genetics , Prion Proteins/metabolism , Prion Diseases/metabolism , Prions/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Mice, Transgenic , Polysaccharides
3.
Ann Clin Transl Neurol ; 10(12): 2316-2323, 2023 12.
Article in English | MEDLINE | ID: mdl-37814583

ABSTRACT

OBJECTIVE: Currently, it is unknown whether infectious prions are present in peripheral tissues and biological fluids of patients affected by sporadic Creutzfeldt-Jakob disease (sCJD), the most common prion disorder in humans. This represents a potential risk for inter-individual prion infection. The main goal of this study was to evaluate the presence of prions in urine of patients suffering from the major subtypes of sCJD. METHODS: Urine samples from sCJD patients spanning the six major subtypes were tested. As controls, we used urine samples from people affected by other neurological or neurodegenerative diseases as well as healthy controls. These samples were analyzed blinded. The presence of prions was detected by a modified version of the PMCA technology, specifically optimized for high sensitive detection of sCJD prions. RESULTS: The PMCA assay was first optimized to detect low quantities of prions in diluted brain homogenates from patients affected by all subtypes of sCJD spiked into healthy urine. Twenty-nine of the 81 patients affected by sCJD analyzed in this study were positive by PMCA testing, whereas none of the 160 controls showed any signal. These results indicate a 36% sensitivity and 100% specificity. The subtypes with the highest positivity rate were VV1 and VV2, which combined account for about 15-20% of all sCJD cases, and no detection was observed in MV1 and MM2. INTERPRETATION: Our findings indicate that potentially infectious prions are secreted in urine of some sCJD patients, suggesting a possible risk for inter-individual transmission. Prion detection in urine might be used as a noninvasive preliminary screening test to detect sCJD.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prions , Humans , Creutzfeldt-Jakob Syndrome/diagnosis , Brain/metabolism
4.
Alzheimers Dement ; 19(8): 3261-3271, 2023 08.
Article in English | MEDLINE | ID: mdl-36749840

ABSTRACT

INTRODUCTION: Sporadic Creutzfeldt-Jakob disease (sCJD) comprises multiple subtypes (MM1, MM2, MV1, MV2C, MV2K, VV1, and VV2) with distinct disease durations and spatiotemporal cascades of brain lesions. Our goal was to establish the ante mortem diagnosis of sCJD subtype, based on patient-specific estimates of the spatiotemporal cascade of lesions detected by diffusion-weighted magnetic resonance imaging (DWI). METHODS: We included 488 patients with autopsy-confirmed diagnosis of sCJD subtype and 50 patients with exclusion of prion disease. We applied a discriminative event-based model (DEBM) to infer the spatiotemporal cascades of lesions, derived from the DWI scores of 12 brain regions assigned by three neuroradiologists. Based on the DEBM cascades and the prion protein genotype at codon 129, we developed and validated a novel algorithm for the diagnosis of the sCJD subtype. RESULTS: Cascades of MM1, MM2, MV1, MV2C, and VV1 originated in the parietal cortex and, following subtype-specific orderings of propagation, went toward the striatum, thalamus, and cerebellum; conversely, VV2 and MV2K cascades showed a striatum-to-cortex propagation. The proposed algorithm achieved 76.5% balanced accuracy for the sCJD subtype diagnosis, with low rater dependency (differences in accuracy of ± 1% among neuroradiologists). DISCUSSION: Ante mortem diagnosis of sCJD subtype is feasible with this novel data-driven approach, and it may be valuable for patient prognostication, stratification in targeted clinical trials, and future therapeutics. HIGHLIGHTS: Subtype diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) is achievable with diffusion MRI. Cascades of diffusion MRI abnormalities in the brain are subtype-specific in sCJD. We proposed a diagnostic algorithm based on cascades of diffusion MRI abnormalities and demonstrated that it is accurate. Our method may aid early diagnosis, prognosis, stratification in clinical trials, and future therapeutics. The present approach is applicable to other neurodegenerative diseases, enhancing the differential diagnoses.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Humans , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Magnetic Resonance Imaging , Brain/pathology
5.
Biomolecules ; 12(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36291746

ABSTRACT

Gerstmann-Sträussler-Scheinker disease (GSS) is a rare genetic prion disease. A large GSS kindred linked to the serine-for-phenylalanine substitution at codon 198 of the prion protein gene (GSS-F198S) is characterized by conspicuous accumulation of prion protein (PrP)-amyloid deposits and neurofibrillary tangles. Recently, we demonstrated the transmissibility of GSS-F198S prions to bank vole carrying isoleucine at 109 PrP codon (BvI). Here we investigated: (i) the transmissibility of GSS-F198S prions to voles carrying methionine at codon 109 (BvM); (ii) the induction of hyperphosphorylated Tau (pTau) in two vole lines, and (iii) compared the phenotype of GSS-F198S-induced pTau with pTau induced in BvM following intracerebral inoculation of a familial Alzheimer's disease case carrying Presenilin 1 mutation (fAD-PS1). We did not detect prion transmission to BvM, despite the high susceptibility of BvI previously observed. Immunohistochemistry established the presence of induced pTau depositions in vole brains that were not affected by prions. Furthermore, the phenotype of pTau deposits in vole brains was similar in GSS-F198S and fAD-PS1. Overall, results suggest that, regardless of the cause of pTau deposition and its relationship with PrPSc in GSS-F198S human-affected brains, the two components possess their own seeding properties, and that pTau deposition is similarly induced by GSS-F198S and fAD-PS1.


Subject(s)
Gerstmann-Straussler-Scheinker Disease , Prions , Animals , Humans , Arvicolinae/genetics , Codon , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/metabolism , Gerstmann-Straussler-Scheinker Disease/pathology , Isoleucine/genetics , Methionine/genetics , Mutation , Phenylalanine , Presenilin-1/genetics , Prion Proteins/genetics , Prions/genetics , Serine
6.
Viruses ; 14(2)2022 02 10.
Article in English | MEDLINE | ID: mdl-35215959

ABSTRACT

Variably protease-sensitive prionopathy is an exceedingly rare, likely underestimated, sporadic prion disease that is characterized by heterogeneous and often non-specific clinical and pathological features posing diagnostic challenges. We report the results of a comprehensive analysis of three emblematic cases carrying different genotypes at the methionine (M)/valine (V) polymorphic codon 129 in the prion protein gene (PRNP). Clinical, biochemical, and neuropathological findings highlighted the prominent role of the host genetic background as a phenotypic modulator. In particular, the PRNP codon 129 showed a remarkable influence on the physicochemical properties of the pathological prion protein (PrPSc), especially on the sensitivity to proteinase K (PK) digestion (VV > MV > MM), which variably affected the three main fragments (i.e., of 19, 17, and 7 kDa, respectively) comprising the PrPSc profile after PK digestion and immunoblotting. This, in turn, correlated with significant differences in the ratio between the 19 kDa and the 7 kDa fragments which was highest in the MM case and lowest in the VV one. The relative amount of cerebral and cerebellar PrP mini-plaques immunohistochemistry showed a similar association with the codon 129 genotype (i.e., VV > MV > MM). Clinical manifestations and results of diagnostic investigations were non-specific, except for the detection of prion seeding activity by the real-time quaking-induced conversion assay in the only cerebrospinal fluid sample that we tested (from patient 129VV).


Subject(s)
PrPSc Proteins/metabolism , Prion Diseases/metabolism , Prion Diseases/pathology , Aged , Brain/metabolism , Brain/pathology , Codon , Endopeptidase K/metabolism , Female , Genotype , Humans , Male , Phenotype , PrPSc Proteins/genetics , Prion Diseases/diagnosis
7.
Acta Neuropathol ; 142(4): 707-728, 2021 10.
Article in English | MEDLINE | ID: mdl-34324063

ABSTRACT

The current classification of sporadic Creutzfeldt-Jakob disease (sCJD) includes six major clinicopathological subtypes defined by the physicochemical properties of the protease-resistant core of the pathologic prion protein (PrPSc), defining two major PrPSc types (i.e., 1 and 2), and the methionine (M)/valine (V) polymorphic codon 129 of the prion protein gene (PRNP). How these sCJD subtypes relate to the well-documented phenotypic heterogeneity of genetic CJD (gCJD) is not fully understood. We analyzed molecular and phenotypic features in 208 individuals affected by gCJD, carrying 17 different mutations, and compared them with those of a large series of sCJD cases. We identified six major groups of gCJD based on the combination PrPSc type and codon 129 genotype on PRNP mutated allele, each showing distinctive histopathological characteristics, irrespectively of the PRNP associated mutation. Five gCJD groups, named M1, M2C, M2T, V1, and V2, largely reproduced those previously described in sCJD subtypes. The sixth group shared phenotypic traits with the V2 group and was only detected in patients carrying the E200K-129M haplotype in association with a PrPSc type of intermediate size ("i") between type 1 and type 2. Additional mutation-specific effects involved the pattern of PrP deposition (e.g., a "thickened" synaptic pattern in E200K carriers, cerebellar "stripe-like linear granular deposits" in those with insertion mutations, and intraneuronal globular dots in E200K-V2 or -M"i"). A few isolated cases linked to rare PRNP haplotypes (e.g., T183A-129M), showed atypical phenotypic features, which prevented their classification into the six major groups. The phenotypic variability of gCJD is mostly consistent with that previously found in sCJD. As in sCJD, the codon 129 genotype and physicochemical properties of PrPSc significantly correlated with the phenotypic variability of gCJD. The most common mutations linked to CJD appear to have a variable and overall less significant effect on the disease phenotype, but they significantly influence disease susceptibility often in a strain-specific manner. The criteria currently used for sCJD subtypes can be expanded and adapted to gCJD to provide an updated classification of the disease with a molecular basis.


Subject(s)
Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/pathology , Insomnia, Fatal Familial/genetics , Mutation/genetics , PrPSc Proteins/genetics , Prion Proteins/genetics , Adult , Aged , Codon , Cohort Studies , Female , Genotype , Humans , Insomnia, Fatal Familial/pathology , Male , Middle Aged , Phenotype
8.
Acta Neuropathol Commun ; 9(1): 55, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33766126

ABSTRACT

Current classifications of sporadic Creutzfeldt-Jakob disease (sCJD) identify five subtypes associated with different disease phenotypes. Most of these histopathological phenotypes (histotypes) co-distribute with distinct pairings of methionine (M)/valine (V) genotypes at codon 129 of the prion protein (PrP) gene and the type (1 or 2) of the disease-associated PrP (PrPD). Types 1 and 2 are defined by the molecular mass (~ 21 kDa and ~ 19 kDa, respectively) of the unglycosylated isoform of the proteinase K-resistant PrPD (resPrPD). We recently reported that the sCJDVV1 subtype (129VV homozygosity paired with PrPD type 1, T1) shows an electrophoretic profile where the resPrPD unglycosylated isoform is characterized by either one of two single bands of ~ 20 kDa (T120) and ~ 21 kDa (T121), or a doublet of ~ 21-20 kDa (T121-20). We also showed that T120 and T121 in sCJDVV have different conformational features but are associated with indistinguishable histotypes. The presence of three distinct molecular profiles of T1 is unique and raises the issue as to whether T120 and T121 represent distinct prion strains. To answer this question, brain homogenates from sCJDVV cases harboring each of the three resPrPD profiles, were inoculated to transgenic (Tg) mice expressing the human PrP-129M or PrP-129V genotypes. We found that T120 and T121 were faithfully replicated in Tg129V mice. Electrophoretic profile and incubation period of mice challenged with T121-20 resembled those of mice inoculated with T121 and T120, respectively. As in sCJDVV1, Tg129V mice challenged with T121 and T120 generated virtually undistinguishable histotypes. In Tg129M mice, T121 was not replicated while T120 and T121-20 generated a ~ 21-20  kDa doublet after lengthier incubation periods. On second passage, Tg129M mice incubation periods and regional PrP accumulation significantly differed in T120 and T121-20 challenged mice. Combined, these data indicate that T121 and T120 resPrPD represent distinct human prion strains associated with partially overlapping histotypes.


Subject(s)
Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/metabolism , Prion Proteins/chemistry , Prion Proteins/genetics , Prion Proteins/metabolism , Animals , Codon , Electrophoretic Mobility Shift Assay , Genotype , Humans , Mice , Mice, Transgenic , Protein Isoforms
9.
Ann Neurol ; 89(3): 560-572, 2021 03.
Article in English | MEDLINE | ID: mdl-33274461

ABSTRACT

OBJECTIVE: Sporadic Creutzfeldt-Jakob disease (sCJD) comprises several subtypes as defined by genetic and prion protein characteristics, which are associated with distinct clinical and pathological phenotypes. To date, no clinical test can reliably diagnose the subtype. We established two procedures for the antemortem diagnosis of sCJD subtype using diffusion magnetic resonance imaging (MRI). METHODS: MRI of 1,458 patients referred to the National Prion Disease Pathology Surveillance Center were collected through its consultation service. One neuroradiologist blind to the diagnosis scored 12 brain regions and generated a lesion profile for each MRI scan. We selected 487 patients with autopsy-confirmed diagnosis of "pure" sCJD subtype and at least one positive diffusion MRI examination. We designed and tested two data-driven procedures for subtype diagnosis: the first procedure-prion subtype classification algorithm with MRI (PriSCA_MRI)-uses only MRI examinations; the second-PriSCA_MRI + Gen-includes knowledge of the prion protein codon 129 genotype, a major determinant of sCJD subtypes. Both procedures were tested on the first MRI and the last MRI follow-up. RESULTS: PriSCA_MRI classified the 3 most prevalent subtypes with 82% accuracy. PriSCA_MRI + Gen raised the accuracy to 89% and identified all subtypes. Individually, the 2 most prevalent sCJD subtypes, MM1 and VV2, were diagnosed with sensitivities up to 95 and 97%, respectively. The performances of both procedures did not change in 168 patients with longitudinal MRI studies when the last examination was used. INTERPRETATION: This study provides the first practical algorithms for antemortem diagnosis of sCJD subtypes. MRI diagnosis of subtype is likely to be attainable at early disease stages to prognosticate clinical course and design future therapeutic trials. ANN NEUROL 2021;89:560-572.


Subject(s)
Brain/diagnostic imaging , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Prion Proteins/genetics , Aged , Creutzfeldt-Jakob Syndrome/classification , Creutzfeldt-Jakob Syndrome/genetics , Female , Genotype , Humans , Male , Middle Aged
10.
JAMA Neurol ; 77(9): 1141-1149, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32478816

ABSTRACT

Importance: Early diagnosis is a requirement for future treatment of prion diseases. Magnetic resonance imaging (MRI) with diffusion-weighted images and improved real-time quaking-induced conversion (RT-QuIC) in cerebrospinal fluid (CSF) have emerged as reliable tests. Objectives: To assess the sensitivity and specificity of diffusion MRI for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) with a new criterion (index test) of at least 1 positive brain region among the cortex of the frontal, parietal, temporal, and occipital lobes; the caudate; the putamen; and the thalamus. Design, Setting, and Participants: This diagnostic study with a prospective and a retrospective arm was performed from January 1, 2003, to October 31, 2018. MRIs were collected from 1387 patients with suspected sCJD consecutively referred to the National Prion Disease Pathology Surveillance Center as part of a consultation service. Intervention: Magnetic resonance imaging. Four neuroradiologists blinded to the diagnosis scored the MRIs of 200 randomly selected patients. One neuroradiologist scored the MRIs of all patients. Main Outcomes and Measures: Sensitivity and specificity of the index test compared with currently used criteria and CSF diagnostic (improved RT-QuIC, 14-3-3, and tau CSF tests). Results: A total of 872 patients matched the inclusion criteria (diffusion MRI and autopsy-confirmed diagnosis), with 619 having sCJD, 102 having other prion diseases, and 151 having nonprion disease. The primary analysis included 200 patients (mean [SD] age, 63.6 [12.9] years; 100 [50.0%] male). Sensitivity of the index test of 4 neuroradiologists was 90% to 95% and superior to sensitivity of current MRI criteria (69%-76%), whereas specificity was 90% to 100% and unchanged. Interrater reliability of the 4 neuroradiologists was high (κ = 0.81), and individual intrarater reliability was excellent (κ ≥0.87). The sensitivity of the index test of 1 neuroradiologist for 770 patients was 92.1% (95% CI, 89.7%-94.1%) and the specificity was 97.4% (95% CI, 93.4%-99.3%) compared with a sensitivity of 69.8% (95% CI, 66.0%-73.4%; P < .001) and a specificity of 98.0% (95% CI, 94.3%-99.6%; P > .99) according to the current criteria. For 88 patients, index test sensitivity (94.9%; 95% CI, 87.5%-98.6%) and specificity (100%; 95% CI, 66.4%-100%) were similar to those of improved RT-QuIC (86.1% [95% CI, 76.5%-92.8%] and 100% [95% CI, 66.4%-100%], respectively). Lower specificities were found for 14-3-3 and tau CSF tests in 452 patients. Conclusions and Relevance: In this study, the diagnostic performance of diffusion MRI with the new criterion was superior to that of current standard criteria and similar to that of improved RT-QuIC. These results may have important clinical implications because MRI is noninvasive and typically prescribed at disease presentation.


Subject(s)
Cerebral Cortex/diagnostic imaging , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Diffusion Magnetic Resonance Imaging/standards , Gray Matter/diagnostic imaging , Practice Guidelines as Topic/standards , Aged , Creutzfeldt-Jakob Syndrome/pathology , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
11.
Acta Neuropathol ; 140(2): 169-181, 2020 08.
Article in English | MEDLINE | ID: mdl-32535770

ABSTRACT

Sporadic Creutzfeldt-Jakob disease (sCJD) is a transmissible brain proteinopathy. Five main clinicopathological subtypes (sCJD-MM(V)1, -MM(V)2C, -MV2K, -VV1, and -VV2) are currently distinguished. Histopathological evidence suggests that the localisation of prion aggregates and spongiform lesions varies among subtypes. Establishing whether there is an initial site with detectable imaging abnormalities (epicentre) and an order of lesion propagation would be informative for disease early diagnosis, patient staging, management and recruitment in clinical trials. Diffusion magnetic resonance imaging (MRI) is the most-used and most-sensitive test to detect spongiform degeneration. This study was designed to identify, in vivo and for the first time, subtype-dependent epicentre and lesion propagation in the brain using diffusion-weighted images (DWI), in the largest known cross-sectional dataset of autopsy-proven subjects with sCJD. We estimate lesion propagation by cross-sectional DWI using event-based modelling, a well-established data-driven technique. DWI abnormalities of 594 autopsy-diagnosed subjects (448 patients with sCJD) were scored in 12 brain regions by 1 neuroradiologist blind to the diagnosis. We used the event-based model to reconstruct sequential orderings of lesion propagation in each of five pure subtypes. Follow-up data from 151 patients validated the estimated sequences. Results showed that epicentre and ordering of lesion propagation are subtype specific. The two most common subtypes (-MM1 and -VV2) showed opposite ordering of DWI abnormality appearance: from the neocortex to subcortical regions, and vice versa, respectively. The precuneus was the most likely epicentre also in -MM2 and -VV1 although at variance with -MM1, abnormal signal was also detected early in cingulate and insular cortices. The caudal-rostral sequence of lesion propagation that characterises -VV2 was replicated in -MV2K. Combined, these data-driven models provide unprecedented dynamic insights into subtype-specific epicentre at onset and propagation of the pathologic process, which may also enhance early diagnosis and enable disease staging in sCJD.


Subject(s)
Creutzfeldt-Jakob Syndrome/diagnostic imaging , Creutzfeldt-Jakob Syndrome/pathology , Prion Proteins/metabolism , Adult , Aged , Diffusion Magnetic Resonance Imaging/methods , Early Diagnosis , Female , Humans , Male , Middle Aged
12.
Acta Neuropathol Commun ; 8(1): 85, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32560672

ABSTRACT

One of remarkable features of sporadic Creutzfeldt-Jakob disease (sCJD) is the great phenotypic variability. Understanding the molecular basis of this variability has important implications for the development of therapeutic approaches. It is well established that, in many cases, phenotypic heterogeneity of sCJD is under control of two determinants: the genotype at the methionine (M)/valine (V) polymorphic codon 129 of the human prion protein gene and the type, 1 or 2, of the pathogenic and disease-related form of the prion protein, PrPD. However, this scenario fails to explain the existence of distinct heterozygous sCJDMV2 subtypes, where heterogeneity occurs without any variation of the 129 allotype and PrPD type. One of these subtypes, denoted sCJDMV2C, associated with PrPD type 2, is characterized by widespread spongiform degeneration of the cerebral cortex (C). The second variant, denoted sCJDMV2K, features prominent deposition of PrPD amyloid forming kuru type (K) plaques. Here we used a mass spectrometry based approach to test the hypothesis that phenotypic variability within the sCJDMV2 subtype is at least partly determined by the abundance of 129 M and 129 V polymorphic forms of proteinase K-resistant PrPD (resPrPD). Consistent with this hypothesis, our data demonstrated a strong correlation of the MV2C and MV2K phenotypes with the relative populations of protease-resistant forms of the pathogenic prion proteins, resPrPD-129 M and resPrPD-129 V, where resPrPD-129 M dominated in the sCJDMV2C variant and resPrPD-129 V in the sCJDMV2K variant. This finding suggests an important, previously unrecognized mechanism for phenotypic determination in human prion diseases.


Subject(s)
Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Prion Proteins/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Epitope Mapping , Humans , Mass Spectrometry , Methionine/chemistry , Phenotype , Prion Proteins/chemistry , Valine/chemistry
13.
Sci Rep ; 10(1): 1503, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001774

ABSTRACT

We report a detailed study of a cohort of sporadic Creutzfeldt-Jakob disease (sCJD) VV1-2 type-mixed cases (valine homozygosity at codon 129 of the prion protein, PrP, gene harboring disease-related PrP, PrPD, types 1 and 2). Overall, sCJDVV1-2 subjects showed mixed clinical and histopathological features, which often correlated with the relative amounts of the corresponding PrPD type. However, type-specific phenotypic characteristics were only detected when the amount of the corresponding PrPD type exceeded 20-25%. Overall, original features of types 1 (T1) and 2 (T2) in sCJDVV1 and -VV2, including rostrocaudal relative distribution and conformational indicators, were maintained in sCJDVV1-2 except for one of the two components of T1 identified by electrophoretic mobility as T121. The T121 conformational characteristics shifted in the presence of T2, inferring a conformational effect of PrPD T2 on T121. The prevalence of sCJDVV1-2 was 23% or 57% of all sCJDVV cases, depending on whether standard or highly sensitive type-detecting procedures were adopted. This study, together with previous data from sCJDMM1-2 (methionine homozygosity at PrP gene codon 129) establishes the type-mixed sCJD variants as an important component of sCJD, which cannot be identified with current non-tissue based diagnostic tests of prion disease.


Subject(s)
Creutzfeldt-Jakob Syndrome/genetics , PrPSc Proteins/genetics , Adult , Aged , Aged, 80 and over , Brain/metabolism , Brain/pathology , Cohort Studies , Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Female , Genetic Association Studies , Humans , Male , Middle Aged , PrPSc Proteins/chemistry , PrPSc Proteins/classification , Protein Conformation , Protein Stability , Tissue Distribution , Valine/chemistry , Valine/genetics
14.
Lab Invest ; 99(11): 1741-1748, 2019 11.
Article in English | MEDLINE | ID: mdl-31249376

ABSTRACT

Prion diseases are transmissible neurological disorders associated with the presence of abnormal, disease-related prion protein (PrPD). The detection of PrPD in the brain is the only definitive diagnostic evidence of prion disease and its identification in body fluids and peripheral tissues are valuable for pre-mortem diagnosis. Protein misfolding cyclic amplification (PMCA) is a technique able to detect minute amount of PrPD and is based on the conversion of normal or cellular PrP (PrPC) to newly formed PrPD, sustained by a self-templating mechanism. Several animal prions have been efficiently amplified by PMCA, but limited results have been obtained with human prions with the exception of variant-Creutzfeldt-Jakob-disease (vCJD). Since the total or partial absence of glycans on PrPC has been shown to affect PMCA efficiency in animal prion studies, we attempted to enhance the amplification of four major sporadic-CJD (sCJD) subtypes (MM1, MM2, VV1, and VV2) and vCJD by single round PMCA using partially or totally unglycosylated PrPC as substrates. The amplification efficiency of all tested sCJD subtypes underwent a strong increase, inversely correlated to the degree of PrPC glycosylation and directly related to the matching of the PrP polymorphic 129 M/V genotype between seed and substrate. This effect was particularly significant in sCJDMM2 and sCJDVV2 allowing the detection of PK-resistant PrPD (resPrPD) in sCJDMM2 and sCJDVV2 brains at dilutions of 6 × 107 and 3 × 106. vCJD, at variance with the tested sCJD subtypes, showed the best amplification with partially deglycosylated PrPC substrate reaching a resPrPD detectability at up to 3 × 1016 brain dilution. The differential effect of substrate PrPC glycosylations suggests subtype-dependent PrPC-PrPD interactions, strongly affected by the PrPC glycans. The enhanced PMCA prion amplification efficiency achieved with unglycosylated PrPC substrates may allow for the developing of a sensitive, non-invasive, diagnostic test for the different CJD subtypes based on body fluids or easily-accessible-peripheral tissues.


Subject(s)
Prion Diseases/diagnosis , Prion Diseases/metabolism , Prion Proteins/metabolism , Prions/metabolism , Animals , Brain/metabolism , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/metabolism , Encephalopathy, Bovine Spongiform/diagnosis , Encephalopathy, Bovine Spongiform/metabolism , Glycosylation , Humans , Mice , Mice, Transgenic , Phenotype , PrPC Proteins/chemistry , PrPC Proteins/genetics , PrPC Proteins/metabolism , Prion Diseases/genetics , Prion Proteins/chemistry , Prion Proteins/genetics , Prions/chemistry , Protein Folding
15.
Acta Neuropathol Commun ; 7(1): 85, 2019 05 29.
Article in English | MEDLINE | ID: mdl-31142381

ABSTRACT

Despite their phenotypic heterogeneity, most human prion diseases belong to two broadly defined groups: Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker disease (GSS). While the structural characteristics of the disease-related proteinase K-resistant prion protein (resPrPD) associated with the CJD group are fairly well established, many features of GSS-associated resPrPD are unclear. Electrophoretic profiles of resPrPD associated with GSS variants typically show 6-8 kDa bands corresponding to the internal PrP fragments as well as a variable number of higher molecular weight bands, the molecular nature of which has not been investigated. Here we have performed systematic studies of purified resPrPD species extracted from GSS cases with the A117V (GSSA117V) and F198S (GSSF198S) PrP gene mutations. The combined analysis based on epitope mapping, deglycosylation treatment and direct amino acid sequencing by mass spectrometry provided a conclusive evidence that high molecular weight resPrPD species seen in electrophoretic profiles represent covalently-linked multimers of the internal ~ 7 and ~ 8 kDa fragments. This finding reveals a mechanism of resPrPD aggregate formation that has not been previously established in prion diseases.


Subject(s)
Brain/metabolism , Gerstmann-Straussler-Scheinker Disease/metabolism , PrPSc Proteins/chemistry , Epitope Mapping , Gerstmann-Straussler-Scheinker Disease/genetics , Humans , Mutation , PrPSc Proteins/genetics , PrPSc Proteins/isolation & purification
16.
Sci Rep ; 9(1): 5191, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30914754

ABSTRACT

The presence of abnormal, disease-related prion protein (PrPD) has recently been demonstrated by protein misfolding cyclic amplification (PMCA) in urine of patients affected with variant Creutzfeldt-Jakob disease (vCJD), a prion disease typically acquired from consumption of prion contaminated bovine meat. The complexity and multistage process of urine excretion along with the obligatory use of PMCA raise the issue of whether strain characteristics of the PrPD present in vCJD brains, such as infectivity and phenotype determination, are maintained in urine excreted PrPD and following amplification by PMCA. We inoculated transgenic mice expressing normal human PrP with amplified urine and brain homogenate achieving the same 100% attack rate, similar incubation periods (in both cases extremely long) and histopathological features as for type and severity of the lesions. Furthermore, PrPD characteristics analyzed by immunoblot and conformational stability immunoassay were indistinguishable. Inoculation of raw vCJD urine caused no disease, confirming the extremely low concentration of PrPD in vCJD urine. These findings show that strain characteristics of vCJD brain PrPD, including infectivity, are preserved in PrPD present in urine and are faithfully amplified by means of PMCA; moreover, they suggest that the PrPD urine test might allow for the diagnosis and identification of disease subtype also in sporadic CJD.


Subject(s)
Brain/metabolism , Creutzfeldt-Jakob Syndrome/transmission , Creutzfeldt-Jakob Syndrome/urine , Prion Proteins/urine , Prions/pathogenicity , Protein Folding , Animals , Brain/pathology , Humans , Mice, Transgenic , Protein Stability
17.
Nat Commun ; 10(1): 640, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718499

ABSTRACT

The original version of this Article contained errors in the author affiliations. Affiliation 2 incorrectly read 'Department of Neurology, The First Hospital of Jilin University, Changchun 130021 Jilin Province, China.'Affiliation 5 incorrectly read 'Department of Otolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 Shanxi Province, China'Affiliation 9 incorrectly read 'State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.'This has now been corrected in both the PDF and HTML versions of the Article.

18.
Nat Commun ; 10(1): 247, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30651538

ABSTRACT

A definitive pre-mortem diagnosis of prion disease depends on brain biopsy for prion detection currently and no validated alternative preclinical diagnostic tests have been reported to date. To determine the feasibility of using skin for preclinical diagnosis, here we report ultrasensitive serial protein misfolding cyclic amplification (sPMCA) and real-time quaking-induced conversion (RT-QuIC) assays of skin samples from hamsters and humanized transgenic mice (Tg40h) at different time points after intracerebral inoculation with 263K and sCJDMM1 prions, respectively. sPMCA detects skin PrPSc as early as 2 weeks post inoculation (wpi) in hamsters and 4 wpi in Tg40h mice; RT-QuIC assay reveals earliest skin prion-seeding activity at 3 wpi in hamsters and 20 wpi in Tg40h mice. Unlike 263K-inoculated animals, mock-inoculated animals show detectable skin/brain PrPSc only after long cohabitation periods with scrapie-infected animals. Our study provides the proof-of-concept evidence that skin prions could be a biomarker for preclinical diagnosis of prion disease.


Subject(s)
Biological Assay/methods , PrPSc Proteins/analysis , Scrapie/diagnosis , Skin/pathology , Animals , Antibodies, Monoclonal/immunology , Biomarkers/analysis , Brain/pathology , Disease Models, Animal , Feasibility Studies , Female , Humans , Mesocricetus , Mice , Mice, Transgenic , PrPSc Proteins/immunology , PrPSc Proteins/pathogenicity , Scrapie/pathology
19.
Emerg Infect Dis ; 25(1): 73-81, 2019 01.
Article in English | MEDLINE | ID: mdl-30561322

ABSTRACT

Variably protease-sensitive prionopathy (VPSPr), a recently described human sporadic prion disease, features a protease-resistant, disease-related prion protein (resPrPD) displaying 5 fragments reminiscent of Gerstmann-Sträussler-Scheinker disease. Experimental VPSPr transmission to human PrP-expressing transgenic mice, although replication of the VPSPr resPrPD profile succeeded, has been incomplete because of second passage failure. We bioassayed VPSPr in bank voles, which are susceptible to human prion strains. Transmission was complete; first-passage attack rates were 5%-35%, and second-passage rates reached 100% and survival times were 50% shorter. We observed 3 distinct phenotypes and resPrPD profiles; 2 imitated sporadic Creutzfeldt-Jakob disease resPrPD, and 1 resembled Gerstmann-Sträussler-Scheinker disease resPrPD. The first 2 phenotypes may be related to the presence of minor PrPD components in VPSPr. Full VPSPr transmission confirms permissiveness of bank voles to human prions and suggests that bank vole PrP may efficiently reveal an underrepresented native strain but does not replicate the complex VPSPr PrPD profile.


Subject(s)
Prion Diseases/transmission , Prions/metabolism , Animals , Arvicolinae , Brain/metabolism , Brain/pathology , Disease Models, Animal , Genotype , Gerstmann-Straussler-Scheinker Disease/pathology , Gerstmann-Straussler-Scheinker Disease/transmission , Humans , Mice , Mice, Transgenic , Peptide Hydrolases/metabolism , Phenotype , Prion Diseases/pathology , Prions/genetics , Protein Isoforms
20.
Acta Neuropathol Commun ; 6(1): 140, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30563563

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive traumatic brain injury (TBI). CTE is generally found in athletes participating in contact sports and military personnel exposed to explosive blasts but can also affect civilians. Clinically and pathologically, CTE overlaps with post-traumatic stress disorder (PTSD), a term mostly used in a clinical context. The histopathology of CTE is defined by the deposition of hyperphosphorylated tau protein in neurons and astrocytes preferentially with perivascular distribution and at the depths of the cortical sulci. In addition to hyperphosphorylated tau, other pathologic proteins are deposited in CTE, including amyloid ß (Aß), transactive response (TAR) DNA-binding protein 43 kDa (TDP-43) and α-synuclein. However, the coexistence of prion disease in CTE has not been observed. We report three cases of histopathologically validated CTE with co-existing sporadic prion disease. Two were identified in a cohort of 55 pathologically verified cases of CTE submitted to the CTE Center of Boston University. One was identified among brain tissues submitted to the National Prion Disease Pathology Surveillance Center of Case Western Reserve University. The histopathological phenotype and properties of the abnormal, disease-related prion protein (PrPD) of the three CTE cases were examined using lesion profile, immunohistochemistry, electrophoresis and conformational tests. Subjects with sporadic Creutzfeldt-Jakob disease (sCJD) matched for age, PrP genotype and PrPD type were used as controls. The histopathology phenotype and PrPD properties of the three CTE subjects showed no significant differences from their respective sCJD controls suggesting that recurring neurotrauma or coexisting CTE pathology did not detectably impact the prion disease phenotype and PrPD conformational characteristics. Based on the reported incidence of sporadic prion disease, the detection of two cases with sCJD in the CTE Center series of 55 CTE cases by chance alone would be highly unlikely (p = 8.93*10- 6). Nevertheless, examination of a larger cohort of CTE is required to conclusively determine whether the risk of CJD is significantly increased in patients with CTE.


Subject(s)
Brain/pathology , Chronic Traumatic Encephalopathy/complications , Prion Diseases/complications , Aged , Aged, 80 and over , Brain/metabolism , Chronic Traumatic Encephalopathy/diagnostic imaging , Humans , Male , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Prion Diseases/diagnostic imaging , Prion Proteins/metabolism , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...