Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters











Publication year range
1.
J Dairy Sci ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122154

ABSTRACT

Bioactive peptides produced via enzymatic hydrolysis have been widely investigated for their dipeptidyl peptidase-IV (DPP-IV) inhibitory properties. However, deficit of studies on fermentation as a mean to produce DPP-IV inhibitory peptides prompted us to draw a comparative study on DPP-IV inhibitory peptides generated from cow, camel, goat, and sheep milk using probiotic fermentation. Further, peptide identification, in silico molecular interactions with DPP-IV, and ensemble docking were performed. Results obtained suggested that goat milk consistently exhibited higher hydrolysis than other milk types. Further, Pediococcus pentosaceus (PP-957) emerged as a potent probiotic, with significantly lower DPP-IV-IC50 values 0.17, 0.12, and 0.25 µg/mL protein equivalent in fermented cow, camel, and goat milk, respectively. Overall, peptides (RPPPPVAM, CHNLDELKDTR, and VLSLSQPK) exhibited strong binding affinity with binding energies of -9.31, -9.18 and -8.9 Kcal·mol-1, respectively, suggesting their potential role as DPP-IV inhibitors. Overall, this study, offers valuable information toward antidiabetic benefits of fermented milk products via inhibition of DPP-IV.

2.
Int J Biol Macromol ; 267(Pt 2): 131376, 2024 May.
Article in English | MEDLINE | ID: mdl-38608981

ABSTRACT

Diabetes is a chronic, metabolic disease characterized by hyperglycemia resulting from either insufficient insulin production or impaired cellular response to insulin. Exopolysaccharides (EPS) produced by Lactobacillus spp. demonstrated promising therapeutic potential in terms of their anti-diabetic properties. Extraction and purification of EPS produced by Lactobacillus acidophilus and Limosilactobacillus reuteri were performed using ethanol precipitation, followed by alcohol/salt based aqueous two-phase system (ATPS). The purification process involved ethanol precipitation followed by an alcohol/salt-based ATPS. The study systematically investigated various purification parameters in ATPS, including ethanol concentration, type and concentration of ionic liquid, type and concentration of salt and pH of salt. Purified EPS contents from L. acidophilus (63.30 µg/mL) and L. reuteri (146.48 µg/mL) were obtained under optimum conditions of ATPS which consisted of 30 % (w/w) ethanol, 25 % (w/w) dipotassium hydrogen phosphate at pH 10 and 2 % (w/w) 1-butyl-3-methylimidazolium octyl sulfate. The extracted EPS content was determined using phenol sulphuric acid method. In α-amylase inhibition tests, the inhibitory rate was found to be 92.52 % (L. reuteri) and 90.64 % (L. acidophilus), while in α-glucosidase inhibition tests, the inhibitory rate was 73.58 % (L. reuteri) and 68.77 % (L. acidophilus), based on the optimized parameters selected in ATPS. These results suggest that the purified EPS derived from the postbiotics of Lactobacillus spp. hold promise as potential antidiabetic agents.


Subject(s)
Hypoglycemic Agents , Ionic Liquids , Lactobacillus , Polysaccharides, Bacterial , Ionic Liquids/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/isolation & purification , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Hydrogen-Ion Concentration , Ethanol/chemistry , alpha-Amylases/antagonists & inhibitors , Lactobacillus acidophilus , Salts/chemistry
3.
J Dairy Sci ; 107(2): 649-668, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37709024

ABSTRACT

In dairy science, camel milk (CM) constitutes a center of interest for scientists due to its known beneficial effect on diabetes as demonstrated in many in vitro, in vivo, and clinical studies and trials. Overall, CM had positive effects on various parameters related to glucose transport and metabolism as well as the structural and functional properties of the pancreatic ß-cells and insulin secretion. Thus, CM consumption may help manage diabetes; however, such a recommendation will become rationale and clinically conceivable only if the exact molecular mechanisms and pathways involved at the cellular levels are well understood. Moreover, the application of CM as an alternative antidiabetic tool may first require the identification of the exact bioactive molecules behind such antidiabetic properties. In this review, we describe the advances in our knowledge of the molecular mechanisms reported to be involved in the beneficial effects of CM in managing diabetes using different in vitro and in vivo models. This mainly includes the effects of CM on the different molecular pathways controlling (1) insulin receptor signaling and glucose uptake, (2) the pancreatic ß-cell structure and function, and (3) the activity of key metabolic enzymes in glucose metabolism. Moreover, we described the current status of the identification of CM-derived bioactive peptides and their structure-activity relationship study and characterization in the context of molecular markers related to diabetes. Such an overview will not only enrich our scientific knowledge of the plausible mode of action of CM in diabetes but should ultimately rationalize the claim of the potential application of CM against diabetes. This will pave the way toward new directions and ideas for developing a new generation of antidiabetic products taking benefits from the chemical composition of CM.


Subject(s)
Diabetes Mellitus , Milk , Animals , Milk/chemistry , Camelus/metabolism , Blood Glucose/analysis , Diabetes Mellitus/veterinary , Hypoglycemic Agents/pharmacology , Peptides/pharmacology
4.
J Dairy Sci ; 107(5): 2633-2652, 2024 May.
Article in English | MEDLINE | ID: mdl-38101739

ABSTRACT

Milk-derived peptides have emerged as a popular mean to manage various lifestyle disorders such as diabetes. Fermentation is being explored as one of the faster and efficient way of producing peptides with antidiabetic potential. Therefore, in this study, an attempt was made to comparatively investigate the pancreatic α-amylase (PAA) inhibitory properties of peptides derived from milk of different farm animals through probiotic fermentation. Peptide's identification was carried out using liquid chromatography-quadrupole time-of-flight mass spectrometry and inhibition mechanisms were characterized by molecular docking. Results obtained showed a PAA-IC50 value (the amount of protein equivalent needed to inhibit 50% of enzymes) between 2.39 and 36.1 µg protein equivalent for different fermented samples. Overall, Pediococcus pentosaceus MF000957-derived fermented milk from all animals indicated higher PAA inhibition than other probiotic derived fermented milk (PAA-IC50 values of 6.01, 3.53, 15.6, and 10.8 µg protein equivalent for bovine, camel, goat, and sheep fermented milk). Further, molecular docking analysis indicated that camel milk-derived peptide IMEQQQTEDEQQDK and goat milk-derived peptide DQHQKAMKPWTQPK were the most potent PAA inhibitory peptides. Overall, the study concluded that fermentation derived peptides may prove useful in for managing diabetes via inhibition of carbohydrate digesting enzyme PAA.


Subject(s)
Cattle Diseases , Diabetes Mellitus , Goat Diseases , Probiotics , Sheep Diseases , Animals , Cattle , Sheep , Milk/chemistry , Molecular Docking Simulation , Animals, Domestic , alpha-Amylases/analysis , Camelus , Peptides/analysis , Goats , Diabetes Mellitus/veterinary , Fermentation
5.
Biochim Biophys Acta Gen Subj ; 1868(1): 130503, 2024 01.
Article in English | MEDLINE | ID: mdl-37923180

ABSTRACT

BACKGROUND: Bioactive peptides have gained attention as potential alternatives to chemical-based skin lightening agents. Based on literature search, the reported articles focused mainly on the sources and preparation methods of tyrosinase inhibitory peptides and there is lacking information regarding the structure-activity relationship (SAR) between peptide property and tyrosinase inhibition. It was hypothesized that peptide properties such as hydrophobicity/hydrophilicity and the amino acid type and position/arrangement at the terminal positions could affect peptide mode of binding hence result in various degrees of tyrosinase inhibition. METHODS: In this study, the sequences of 128 tyrosinase inhibitory peptides were collected from peer-reviewed articles. The hydrophobicity/hydrophilicity property and the amino acid profile of peptides at the N- and C-terminals were analyzed using bioinformatics tools. Molecular docking analysis was employed to further elucidate the roles of reactive amino acids in tyrosinase-peptide binding interactions. The peptide-regulated intracellular melanogenesis pathways were also compiled and discussed. RESULTS: It was found that hydrophobic and/or polar neutral properties may facilitate or stabilize peptide binding with tyrosinase. Moreover, short peptides featuring a cysteine and tyrosine at the N- and C- terminal ultimate positions tend to bind to the active site of tyrosinase whereas positively charged amino acid such as arginine at the N-terminal does not favor peptide binding to tyrosinase. CONCLUSIONS: These findings provide detailed explanation on how peptide/amino acid structures are related and what function they play in tyrosinase inhibition. It could also inspire researchers to account for tyrosinase-peptide SAR and the underlying anti-melanogenesis mechanisms in formulating peptide-based treatments or strategies against skin hyperpigmentation.


Subject(s)
Melanins , Monophenol Monooxygenase , Monophenol Monooxygenase/metabolism , Melanins/metabolism , Molecular Docking Simulation , Peptides/pharmacology , Peptides/metabolism , Structure-Activity Relationship , Signal Transduction
6.
Food Chem ; 419: 136070, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37030209

ABSTRACT

A higher specific activity of microbial transglutaminase (mTGase) is desirable for a broad range of applications ranging from food industry to biotechnology. Three-dimensional docking simulation of mTGase revealed that residues V65, W69, and Y75 were critical for substrate recognition. A semi-rational mutagenesis approach was applied to each residue to generate three separate mini mutant libraries. A high-throughput screening process identified five mutants that demonstrated improved specific activities than the wild type (WT) mTGase were isolated from the Y75 mini mutant library. Mutant Y75L showed approximately 60% increment in specific activity and improved substrate specificity. Conjugation of two heterologous single-chain fragment variable clones to generate a diabody with mutant Y75L was successfully performed and validated. This work demonstrates the successful application of semi-rational mutagenesis coupled with a high-throughput screening approach to identify mTGase mutants with improved specific activities and specificities which are beneficial for protein-protein conjugation.


Subject(s)
Transglutaminases , Transglutaminases/genetics , Transglutaminases/chemistry , Mutagenesis
7.
Food Res Int ; 168: 112706, 2023 06.
Article in English | MEDLINE | ID: mdl-37120189

ABSTRACT

Investigations into ACE inhibitory properties of probiotic fermented bovine, camel, goat, and sheep milk were performed and studied for two weeks of refrigerated storage. Results from the degree of proteolysis suggested higher susceptibility of goat milk proteins, followed by sheep and camel milk proteins, to the probiotic-mediated proteolysis. ACE-inhibitory properties displayed continuous decline in ACE-IC50 values for two weeks of refrigerated storage. Overall, goat milk fermented with Pediococcus pentosaceus caused maximum ACE inhibition (IC50: 262.7 µg/mL protein equivalent), followed by camel milk (IC50: 290.9 µg/mL protein equivalent). Studies related to peptide identification and in silico analysis using HPEPDOCK score revealed presence of 11, 13, 9 and 9 peptides in fermented bovine, goat, sheep, and camel milk, respectively, with potent antihypertensive potential. The results obtained suggest that the goat and camel milk proteins demonstrated higher potential for generating antihypertensive peptides via fermentation when compared to bovine and sheep milk.


Subject(s)
Animals, Domestic , Probiotics , Animals , Cattle , Sheep , Animals, Domestic/metabolism , Antihypertensive Agents/pharmacology , Camelus/metabolism , Peptides/chemistry , Milk Proteins , Goats/metabolism
8.
Foods ; 12(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36981252

ABSTRACT

Hypercholesterolemia remains a serious global public health concern. Previously, synthetic anti-hypercholesterolemic drugs were used for ameliorating this condition; however, long-term usage presented several side-effects. In this regard, natural products as an adjunct therapy has emerged in recent times. This study aimed to produce novel bioactive peptides with anti-hypercholesterolemic activity (cholesterol esterase (CEase) and pancreatic lipase (PL)) from quinoa protein hydrolysates (QPHs) using three enzymatic hydrolysis methods (chymotrypsin, protease and bromelain) at 2-h hydrolysis intervals (2, 4, and 6 h). Chymotrypsin-generated hydrolysates showed higher CEase (IC50: 0.51 mg/mL at 2 h) and PL (IC50: 0.78 mg/mL at 6 h) inhibitory potential in comparison to other derived hydrolysates and intact quinoa proteins. Peptide profiling by LC-MS QTOF and in silico interaction with target enzymes showed that only four derived bioactive peptides from QPHs could bind in the active site of CEase, whereas twelve peptides could bind in the active site of PL. Peptides QHPHGLGALCAAPPST, HVQGHPALPGVPAHW, and ASNLDNPSPEGTVM were identified to be potential CEase inhibitors, and FSAGGLP, QHPHGLGALCAAPPST, KIVLDSDDPLFGGF, MFVPVPH, and HVQGHPALPGVPAHW were identified as potential PL inhibitors on the basis of the maximum number of reactive residues in these bioactive peptides. In conclusion, QPHs can be considered as an alternative therapy for the treatment of hypercholesterolemia.

9.
Int J Biol Macromol ; 226: 321-335, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36502951

ABSTRACT

The anti-hyperpigmentation effect and tyrosinase inhibitory mechanism of cinnamon polysaccharides have not been reported. The current study focused on the extraction of polysaccharides from Cinnamomum cassia bark using microwave-assisted approach and optimization of the extraction process (i.e., microwave power, irradiation time and buffer-to-sample ratio) by Box-Behnken design to obtain a high yield of polysaccharides with high sun protection factor (SPF), anti-hyperpigmentation and antioxidant activities. The extracted pectic-polysaccharides had low molecular weight and degree of esterification. The optimal extraction process had polysaccharides characterized by (a) monophenolase inhibitory activity = 97.5 %; (b) diphenolase inhibitory activity = 99.4 %; (c) ferric reducing antioxidant power = 4.4 mM; (d) SPF = 6.1; (e) yield = 13.7 %. The SPF, tyrosinase inhibitory and antioxidant activities were primarily contributed by the polysaccharides. In conclusion, the polysaccharides from C. cassia could be an alternative therapeutic source for skin hyperpigmentation treatment.


Subject(s)
Antioxidants , Cinnamomum aromaticum , Antioxidants/pharmacology , Microwaves , Monophenol Monooxygenase , Polysaccharides/pharmacology
10.
Food Chem ; 409: 135224, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36577323

ABSTRACT

This is the first study to provide a preliminary investigation into the recovery of protein from wheat germ and the prediction of their extraction conditions in microwave cavity using a novel DES solvent. The response surface methodology was used to predict the microwaved protein extraction conditions of the DWG. The effects of DES buffer-concentration (X1: 0.01-1.00 g/mL), microwave power (X2: 50-250 W), irradiation time (X3: 1-5 min) and sample-to-buffer ratio (X4: 1:10-1:50) were tested using a single factor and Box-Behnken experimental design. Under the optimized conditions (X1 = 0.52 g/mL, X2 = 186 W, X3 = 3.28 min, and X4 = 1:39) protein yield and absorbed microwave were obtained at the optimal value of 33.00 % and 677 J/min, respectively with no denaturation of the protein as validated from the SDS-PAGE gel electrophoresis profile. Consequently, this investigation provides a practical approach for the extraction of bioactive protein from DWG using a novel deep eutectic solvent.


Subject(s)
Deep Eutectic Solvents , Triticum , Research Design , Solvents
11.
Food Chem ; 407: 135082, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36493485

ABSTRACT

Application of non-thermal treatment to proteins prior to enzymatic hydrolysis can facilitate the release of novel bioactive peptides (BPs) with unique biological activities. In this study, lupin protein isolate was pre-treated with ultrasound and hydrolysed using alcalase and flavourzyme to produce alcalase hydrolysate (ACT) and flavourzyme hydrolysate(FCT). These hydrolysates were fractionated into 1, 5, and 10 kDa molecular weight fractions using a membrane ultrafiltration technique. The in vitro angiotensin-converting enzyme (ACE) studies revealed that unfractionated ACT (IC50 = 3.21 mg mL-1) and FCT (IC50 = 3.32 mg mL-1) were more active inhibitors of ACE in comparison to their ultrafiltrated fractions with IC50 values ranging from 6.09 to 7.45 mg mL-1. Molecular docking analysis predicted three unique peptides from ACT (AIPPGIPY, SVPGCT, and QGAGG) and FCT (AIPINNPGKL, SGNQGP, and PPGIP) as potential ACE inhibitors. Thus, unique BPs with ACE inhibitory effects might be generated from ultrasonicated lupin protein.


Subject(s)
Antihypertensive Agents , Protein Hydrolysates , Antihypertensive Agents/chemistry , Molecular Docking Simulation , Protein Hydrolysates/chemistry , Peptides/chemistry , Peptidyl-Dipeptidase A/chemistry , Hydrolysis , Subtilisins/metabolism
12.
Foods ; 11(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36359988

ABSTRACT

The use of natural ingredients for managing diabetes is becoming more popular in recent times due to the several adverse effects associated with synthetic antidiabetic medications. In this study, we investigated the in vitro antidiabetic potential (through inhibition of α-glucosidase (AG) and α-amylase (AA)) of hydrolysates from lupin proteins pretreated with ultrasound and hydrolyzed using alcalase (ACT) and flavourzyme (FCT). We further fractionated ACT and FCT into three molecular weight fractions. Unfractionated ACT and FCT showed significantly (p < 0.05) higher AG (IC50 value = 1.65 mg/mL and 1.91 mg/mL) and AA (IC50 value = 1.66 mg/mL and 1.98 mg/mL) inhibitory activities than their ultrafiltrated fractions, where lower IC50 values indicate higher inhibitory activities. Then, ACT and FCT were subjected to peptide sequencing using LC-MS-QTOF to identify the potential AG and AA inhibitors. Molecular docking was performed on peptides with the highest number of hotspots and PeptideRanker score to study their interactions with AG and AA enzymes. Among the peptides identified, SPRRF, FE, and RR were predicted to be the most active peptides against AG, while AA inhibitors were predicted to be RPR, PPGIP, and LRP. Overall, hydrolysates prepared from lupin proteins using alcalase and flavourzyme may be useful in formulating functional food for managing diabetics.

14.
Article in English | MEDLINE | ID: mdl-35251203

ABSTRACT

Chemical constituents in plants can be greatly affected by postharvest processing, and it is important to identify the factors that lead to significant changes in chemistry and bioactivity. In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used to analyze extracts of Clinacanthus nutan (C. nutans) leaves generated using different parameters (solvent polarities, solid-liquid ratios, ultrasonic durations, and cycles of extraction). In addition, the effects of these extracts on the viability of cardiac c-kit cells (CCs) were tested. The IR spectra were processed using SIMCA-P software. PCA results of all tested parameter sets were within acceptable values. Solvent polarity was identified as the most influential factor to observe the differences in chemical profile and activities of C. nutans extracts. Ideal extraction conditions were identified, for two sample groups (G1 and G2), as they showed optimal total phenolic content (TPC) yield of 44.66 ± 0.83 mg GAE/g dw and 45.99 ± 0.29 mg GAE/g dw and CC viability of 171.81 ± 4.06% and 147.53 ± 6.80%, respectively. Validation tools such as CV-ANOVA (p < 0.05) and permutation (R 2 and Q 2 plots were well intercepted to each other) have further affirmed the significance and reliability of the partial least square (PLS) model of solvent polarity employed in extraction. Hence, these approaches help optimize postharvest processes that encourage positive TPC and CCs results in C. nutans extracts.

15.
Food Chem ; 367: 130661, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34348197

ABSTRACT

Cow (CwC) and camel casein (CaC) hydrolysates were generated using Alcalase™ (CwCA and CaCA) and Pronase-E (CwCP and CaCP) each for 3 and 6 h, and investigated for their potential to inhibit key lipid digesting enzymes i.e., pancreatic lipase (PL) and cholesteryl esterase (CE). Results revealed stronger PL and CE inhibition by CaC hydrolysates compared to CwC. Potent hydrolysates (CwCP-3 h and CaCA-6 h) upon simulated gastrointestinal digestion (SGID) showed significant improvement in inhibition of both PL and CE. However, both the SGID hydrolysates showed similar extent of PL and CE inhibition and were further sequenced for peptide identification. Peptides MMML, FDML, HLPGRG from CwC and AAGF, MSNYF, FLWPEYGAL from CaC hydrolysates were predicted to be most active PL inhibitory peptides. Peptide LP found in both CwC and CaC hydrolysates was predicted as active CE inhibitor. Thus, CwC and CaC could be potential source of peptides with promising CE and PL inhibitory properties.


Subject(s)
Caseins , Sterol Esterase , Animals , Camelus , Cattle , Digestion , Female , Hydrolysis , Lipase , Peptides , Protein Hydrolysates , Sterol Esterase/genetics
16.
Molecules ; 28(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36615286

ABSTRACT

Abnormal skin pigmentation commonly occurs during the wound healing process due to the overproduction of melanin. Chicken egg white (CEW) has long been used to improve skin health. Previous published works had found CEW proteins house bioactive peptides that inhibit tyrosinase, the key enzyme of melanogenesis. The current study aimed to evaluate the anti-pigmentation potential and mechanism of the CEW-derived peptide (GYSLGNWVCAAK) and hydrolysates (CEWHmono and CEWHdi), using a cell-based model. All of these peptide and hydrolysates inhibited intracellular tyrosinase activity and melanin level up to 45.39 ± 1.31 and 70.01 ± 1.00%, respectively. GYSLGNWVCAAK and CEWHdi reduced intracellular cAMP levels by 13.38 ± 3.65 and 14.55 ± 2.82%, respectively; however, CEWHmono did not affect cAMP level. Moreover, the hydrolysates downregulated the mRNA expression of melanogenesis-related genes, such as Mitf, Tyr, Trp-1 and Trp-2, but GYSLGNWVCAAK only suppressed Tyr gene expression. Downregulation of the genes may lower the catalytic activities and/or affect the structural stability of TYR, TRP-1 and TRP-2; thus, impeding melanogenesis to cause an anti-pigmentation effect in the cell. Outcomes from the current study could serve as the starting point to understand the underlying complex, multifaceted melanogenesis regulatory mechanism at the cellular level.


Subject(s)
Melanins , Monophenol Monooxygenase , Animals , Chickens/metabolism , Skin Pigmentation , Egg White , Peptides/pharmacology
17.
Food Chem X ; 12: 100165, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34877527

ABSTRACT

Human diet is undergoing a shift towards plant-based diet as a sustainable source of protein compared to animal-derived protein. In this study, cholesterol esterase (CEase) and pancreatic lipase (PL) inhibitory activities of amaranth protein hydrolysates (APHs) were studied. Bromelain, chymotrypsin, and actinase E were used for generating APHs at 2, 4 & 6 h of hydrolysis. Higher PL inhibiting potential were observed in bromelain-derived APHs (IC50 = 0.38-0.66 mg/mL) in comparison to intact amaranth proteins (IC50 = 3.93 mg/mL). Bromelain-4 h hydrolysates (AB4) demonstrated significant inhibitory potential for both CEase (IC50 = 0.47 mg/mL) and PL (IC50 = 0.48 mg/mL) activity. Peptide identification in AB-4 hydrolysate revealed that among 17 bioactive peptides, three peptides (FPFPPTLGY, FGAPR, and FPFVPAPT) were predicted as potential PL inhibitors and only one peptide (FPFVPAPT) was predicted as CEase inhibitor based on the number of substrate binding sites on active site of the enzymes. This is the first study providing insights into amaranth protein derived bioactive peptide possessing CEase and LIP inhibitory potential.

18.
Biomolecules ; 11(10)2021 10 19.
Article in English | MEDLINE | ID: mdl-34680182

ABSTRACT

Our main objective was to investigate the effect of chronic administration of hydrogen sulphide donor (sodium hydrosulphide) on the expression of intercellular adhesion molecule-1 (ICAM-1) and concentration of nuclear factor-kappa B (NF-kB) in a renal ischemia-reperfusion injury (IRI) model of WKY and L-nitro-arginine-methyl-ester (L-NAME)-induced hypertensive rats. Sodium hydrosulphide (NaHS) was administered intraperitoneally (i.p.) for 35 days while cystathionine gamma lyase (CSE) inhibitor dL-propargylglycine (PAG) was administered at a single dose of 50 mg/kg. Animals were anesthetised using sodium pentobarbitone (60 mg/kg) and then prepared to induce renal ischemia by clamping the left renal artery for 30 min followed by 3 h of reperfusion. Pre-treatment with NaHS improved the renal functional parameters in both WKY and L-NAME-induced hypertensive rats along with reduction of blood pressure in hypertensive groups. Oxidative stress markers like malondialdehyde (MDA), total superoxide dismutase (T-SOD) and glutathione (GSH) were also improved by NaHS treatment following renal IRI. Levels of ICAM-1 and NF-kB concentration were reduced by chronic treatment with NaHS and increased by PAG administration after renal IRI in plasma and kidney. Treatment with NaHS improved tubular morphology and glomerulus hypertrophy. Pre-treatment with NaHS reduced the degree of renal IRI by potentiating its antioxidant and anti-inflammatory mechanism, as evidenced by decreased NF-kB concentration and downregulation of ICAM-1 expression.


Subject(s)
Acute Kidney Injury/drug therapy , Hydrogen Sulfide/pharmacology , Intercellular Adhesion Molecule-1/genetics , Reperfusion Injury/drug therapy , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Animals , Gene Expression Regulation/drug effects , Humans , NF-kappa B/genetics , Rats, Inbred Dahl , Reperfusion Injury/genetics , Reperfusion Injury/pathology
19.
J Dairy Sci ; 104(7): 7393-7405, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33934858

ABSTRACT

Novel antihypercholesterolemic bioactive peptides (BAP) from peptic camel whey protein hydrolysates (CWPH) were generated at different time, temperature, and enzyme concentration (%). Hydrolysates showed higher pancreatic lipase- (PL; except 3 CWPH) and cholesterol esterase (CE)-inhibiting potential, as depicted by lower half-maximal inhibitory concentration values (IC50 values) compared with nonhydrolyzed camel whey proteins (CWP). Peptide sequencing and in silico data depicted that most BAP from CWPH could bind active site of PL, whereas as only 3 peptides could bind the active site of CE. Based on higher number of reactive residues in the BAP and greater number of substrate binding sites, FCCLGPVPP was identified as a potential CE-inhibitory peptide, and PAGNFLPPVAAAPVM, MLPLMLPFTMGY, and LRFPL were identified as PL inhibitors. Molecular docking of selected peptides showed hydrophilic and hydrophobic interactions between peptides and target enzymes. Thus, peptides derived from CWPH warrant further investigation as potential candidates for adjunct therapy for hypercholesterolemia.


Subject(s)
Camelus , Sterol Esterase , Animals , Lipase , Molecular Docking Simulation , Peptides , Protein Hydrolysates , Whey , Whey Proteins
20.
Foods ; 10(3)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810046

ABSTRACT

Nature-derived tyrosinase inhibitors are of great industrial interest. Three monophenolase inhibitor peptides (MIPs) and three diphenolase inhibitor peptides (DIPs) from a previous study were investigated for their in vitro tyrosinase inhibitory effects, mode of inhibition, copper-chelating activity, sun protection factor (SPF) and antioxidant activities. DIP1 was found to be the most potent tyrosinase inhibitor (IC50 = 3.04 ± 0.39 mM), which could be due to the binding interactions between its aromatic amino acid residues (Y2 and D7) with tyrosinase hotspots (H85, V248, H258, H263, F264, R268, V283 and E322) and its ability to chelate copper ion within the substrate-binding pocket. The conjugated planar rings of tyrosine and tryptophan may interact with histidine within the active site to provide stability upon enzyme-peptide binding. This postulation was later confirmed as the Lineweaver-Burk analysis had identified DIP1 as a competitive inhibitor and DIP1 also showed 36.27 ± 1.17% of copper chelating activity. In addition, DIP1 provided the highest SPF value (11.9 ± 0.04) as well as ferric reducing antioxidant power (FRAP) (5.09 ± 0.13 mM FeSO4), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) (11.34 ± 0.90%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (29.14 ± 1.36%) free radical scavenging activities compared to other peptides. These results demonstrated that DIP1 could be a multifunctional anti-tyrosinase agent with pharmaceutical and cosmeceutical applications.

SELECTION OF CITATIONS
SEARCH DETAIL