Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.826
Filter
1.
Neural Regen Res ; 20(2): 424-439, 2025 Feb 01.
Article in English | MEDLINE | ID: mdl-38819046

ABSTRACT

Alzheimer's disease is a debilitating, progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins, including amyloid plaques and intracellular tau tangles, primarily within the brain. Lysosomes, crucial intracellular organelles responsible for protein degradation, play a key role in maintaining cellular homeostasis. Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer's disease. Currently, the efficacy of drugs in treating Alzheimer's disease is limited, with major challenges in drug delivery efficiency and targeting. Recently, nanomaterials have gained widespread use in Alzheimer's disease drug research owing to their favorable physical and chemical properties. This review aims to provide a comprehensive overview of recent advances in using nanomaterials (polymeric nanomaterials, nanoemulsions, and carbon-based nanomaterials) to enhance lysosomal function in treating Alzheimer's disease. This review also explores new concepts and potential therapeutic strategies for Alzheimer's disease through the integration of nanomaterials and modulation of lysosomal function. In conclusion, this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer's disease. The application of nanotechnology to the development of Alzheimer's disease drugs brings new ideas and approaches for future treatment of this disease.

2.
J Ethnopharmacol ; : 118650, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094755

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Linggui-Zhugan (LGZG) comprises four herbs and is a classic formula in traditional Chinese medicine. There is strong clinical evidence of its pleiotropic effects in the prevention of diabetes and its related complications. Although several classes of drugs are currently available for clinical management of diabetic kidney disease (DKD), tight glycemic and/or hypertension control may not prevent disease progression. This study evaluated the therapeutic effect of the ethnopharmacological agent LGZG on DKD. AIM OF THE STUDY: This study aimed to investigate the effects of LGZG formula with standard quality control on experimental DKD and its related metabolic disorders in animal model. Meanwhile, the present study aimed to investigate regulatory effects of LGZG on renal proteinase 3 (PR3) to reveal mechanisms underlying renoprotection benefits of LGZG. MATERIALS AND METHODS: LGZG decoction was fingerprinted by high-performance liquid chromatography for quality control. An experimental model of DKD was induced in C57 BL/6J mice by a combination of high-fat diet feeding, uninephrectomy, and intraperitoneal injection of streptozocin. The LGZG decoction was administrated by daily oral gavage. RESULTS: Treatment with LGZG formula significantly attenuated DKD-like traits (including severe albuminuria, mesangial matrix expansion, and podocyte loss) and metabolic dysfunction (disordered body composition and dyslipidemia) in mice. RNA sequencing data revealed a close association of LGZG treatment with marked modulation of signaling pathways related to podocyte injury and cell apoptosis. Mechanistically, LGZG suppressed the DKD-triggered increase in renal PR3 and podocyte apoptosis. In-vitro incubation of mouse immortalized podocytes with LGZG-medicated serum attenuated PR3-mediated apoptosis. CONCLUSION: Our data demonstrated that the LGZG formula protected against DKD in mice and was closely associated with its inhibitory effects on PR3-mediated podocyte apoptosis.

3.
Front Oncol ; 14: 1371432, 2024.
Article in English | MEDLINE | ID: mdl-39055557

ABSTRACT

Purpose: This study aimed to develop and validate a radiogenomics nomogram for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC) on the basis of MRI and microRNAs (miRNAs). Materials and methods: This cohort study included 168 patients (training cohort: n = 116; validation cohort: n = 52) with pathologically confirmed HCC, who underwent preoperative MRI and plasma miRNA examination. Univariate and multivariate logistic regressions were used to identify independent risk factors associated with MVI. These risk factors were used to produce a nomogram. The performance of the nomogram was evaluated by receiver operating characteristic curve (ROC) analysis, sensitivity, specificity, accuracy, and F1-score. Decision curve analysis was performed to determine whether the nomogram was clinically useful. Results: The independent risk factors for MVI were maximum tumor length, rad-score, and miRNA-21 (all P < 0.001). The sensitivity, specificity, accuracy, and F1-score of the nomogram in the validation cohort were 0.970, 0.722, 0.884, and 0.916, respectively. The AUC of the nomogram was 0.900 (95% CI: 0.808-0.992) in the validation cohort, higher than that of any other single factor model (maximum tumor length, rad-score, and miRNA-21). Conclusion: The radiogenomics nomogram shows satisfactory predictive performance in predicting MVI in HCC and provides a feasible and practical reference for tumor treatment decisions.

5.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001026

ABSTRACT

In the realm of electrochemical nitrite detection, the potent oxidizing nature of nitrite typically necessitates operation at high detection potentials. However, this study introduces a novel approach to address this challenge by developing a highly sensitive electrochemical sensor with a low reduction detection potential. Specifically, a copper metal nanosheet/carbon paper sensitive electrode (Cu/CP) was fabricated using a one-step electrodeposition method, leveraging the catalytic reduction properties of copper's high occupancy d-orbital. The Cu/CP sensor exhibited remarkable performance in nitrite detection, featuring a low detection potential of -0.05 V vs. Hg/HgO, a wide linear range of 10~1000 µM, an impressive detection limit of 0.079 µM (S/N = 3), and a high sensitivity of 2140 µA mM-1cm-2. These findings underscore the efficacy of electrochemical nitrite detection through catalytic reduction as a means to reduce the operational voltage of the sensor. By showcasing the successful implementation of this strategy, this work sets a valuable precedent for the advancement of electrochemical low-potential nitrite detection methodologies.

6.
Phytomedicine ; 132: 155842, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39004031

ABSTRACT

BACKGROUND: Prediabetes strongly increases the risk of type 2 diabetes and cardiovascular events. However, lifestyle intervention, the first-line treatment for prediabetes currently, was inconsistently beneficial for glucose metabolism, and the conventional medicines, such as metformin, is controversial for prediabetes due to the possible side effects. PURPOSE: This study was designed to evaluate the effects of Zhenyuan Capsule, a Chinese patented medicine consisting of ginseng berry saponins extracted from the mature berry of Panax Ginseng, on the glucose metabolism of prediabetic patients as a complementary therapy. STUDY DESIGN AND METHODS: In this randomized, double-Blinded, placebo-controlled, crossover trial, 195 participants with prediabetes were randomized 1:1 to receive either placebo followed by Zhenyuan Capsule, or vice versa, alongside lifestyle interventions. Each treatment period lasted 4 weeks with a 4-week washout period in between. The primary outcomes were the changes in fasting plasma glucose (FPG) and 2-h postprandial plasma glucose (2-h PG) from baseline. Secondary outcomes includes the changes in fasting and 2-h postprandial insulin and C-peptide, the homeostatic model assessment-insulin resistance (HOMA-IR) index and quantitative insulin sensitivity check index (QUICKI) from baseline. Blood lipids and adverse events were also assessed. RESULTS: Compared with placebo, Zhenyuan Capsule caused remarkable reduction in 2-h PG (-0.98 mmol/l) after adjusting treatment order. Zhenyuan Capsule also reduced the fasting and 2-h postprandial levels of insulin and C-peptide, lowered HOMA-IR index (-1.26), and raised QUICKI index (+0.012) when compared to placebo. Additionally, a significant increase in high density lipoprotein cholesterol (HDL-C; +0.25 mmol/l) was found in patients with Zhenyuan Capsule. No serious adverse event occurred during the study. CONCLUSIONS: Among prediabetic patients, Zhenyuan Capsule further reduced 2-h PG level, alleviated insulin resistance and raised HDL-C level on the background of lifestyle interventions. The study protocol is registered with the Chinese Clinical Trial Registry (ChiCTR2000034000).

7.
Adv Healthc Mater ; : e2400149, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007278

ABSTRACT

Alzheimer's disease (AD) poses a significant burden on the economy and healthcare systems worldwide. Although the pathophysiology of AD remains debatable, its progression is strongly correlated with the accumulation of tau aggregates. Therefore, tau clearance from brain lesions can be a promising strategy for AD therapy. To achieve this, the present study combined proteolysis-targeting chimera (PROTAC), a novel protein-degradation technique that mediates degradation of target proteins via the ubiquitin-proteasome system, and a neurotransmitter-derived lipidoid (NT-lipidoid) nanoparticle delivery system with high blood-brain barrier-penetration activity, to generate a novel nanomedicine named NPD. Peptide 1, a cationic tau-targeting PROTAC is loaded onto the positively charged nanoparticles using DNA-intercalation technology. The resulting nanomedicine displayed good encapsulation efficiency, serum stability, drug release profile, and blood-brain barrier-penetration capability. Furthermore, NPD potently induced tau clearance in both cultured neuronal cells and the brains of AD mice. Moreover, intravenous injection of NPD led to a significant improvement in the cognitive function of the AD mice, without any remarkable abnormalities, thereby supporting its clinical development. Collectively, the novel nanomedicine developed in this study may serve as an innovative strategy for AD therapy, since it effectively and specifically induces tau protein clearance in brain lesions, which in turn enhances cognition.

8.
Front Bioeng Biotechnol ; 12: 1406722, 2024.
Article in English | MEDLINE | ID: mdl-39011153

ABSTRACT

Unveiling the potential application of psychrophilic polymerases as candidates for polymerase-nanopore long-read sequencing presents a departure from conventional choices such as thermophilic Bacillus stearothermophilus (Bst) renowned for its limitation in temperature and mesophilic Bacillus subtilis phage (phi29) polymerases for limitations in strong exonuclease activity and weak salt tolerance. Exploiting the PB-Bst fusion DNA polymerases from Psychrobacillus (PB) and Bacillus stearothermophilus (Bst), our structural and biochemical analysis reveal a remarkable enhancement in salt tolerance and a concurrent reduction in exonuclease activity, achieved through targeted substitution of a pivotal functional domain. The sulfolobus 7-kDa protein (Sso7d) emerges as a standout fusion domain, imparting significant improvements in PB-Bst processivity. Notably, this study elucidates additional functional sites regulating exonuclease activity (Asp43 and Glu45) and processivity using artificial nucleotides (Glu266, Gln283, Leu334, Glu335, Ser426, and Asp430). By disclosing the intricate dynamics in exonuclease activity, strand displacement, and artificial nucleotide-based processivity at specific functional sites, our findings not only advance the fundamental understanding of psychrophilic polymerases but also provide novel insights into polymerase engineering.

9.
Biotechnol J ; 19(7): e2400164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39014928

ABSTRACT

Iterative metabolic engineering of Fusarium fujikuroi has traditionally been hampered by its low homologous recombination efficiency and scarcity of genetic markers. Thus, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas9) system has emerged as a promising tool for precise genome editing in this organism. Some integrated CRISPR/Cas9 strategies have been used to engineer F. fujikuroi to improve GA3 production capabilities, but low editing efficiency and possible genomic instability became the major obstacle. Herein, we developed a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in F. fujikuroi. This system, based on an autonomously replicating sequence, demonstrated the capability of a single plasmid harboring all editing components to achieve 100%, 75%, and 37.5% editing efficiency for single, double, and triple gene targets, respectively. Remarkably, even with a reduction in homologous arms to 50 bp, we achieved a 12.5% gene editing efficiency. By employing this system, we successfully achieved multicopy integration of the truncated 3-hydroxy-3-methyl glutaryl coenzyme A reductase gene (tHMGR), leading to enhanced GA3 production. A key advantage of our plasmid-based gene editing approach was the ability to recycle selective markers through a simplified protoplast preparation and recovery process, which eliminated the need for additional genetic markers. These findings demonstrated that the single-plasmid CRISPR/Cas9 system enables rapid and precise multiple gene deletions/integrations, laying a solid foundation for future metabolic engineering efforts aimed at industrial GA3 production.


Subject(s)
CRISPR-Cas Systems , Fusarium , Gene Editing , CRISPR-Cas Systems/genetics , Gene Editing/methods , Fusarium/genetics , Plasmids/genetics , Metabolic Engineering/methods , Genetic Markers/genetics
10.
Cell Death Differ ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009653

ABSTRACT

Although deubiquitinases (DUBs) have been well described in liver tumorigenesis, their potential roles and mechanisms have not been fully understood. In this study, we identified ubiquitin-specific protease 1 (USP1) as an oncogene with essential roles during hepatocellular carcinoma (HCC) progression. USP1, with elevated expression levels and clinical significance, was identified as a hub DUB for HCC in multiple bioinformatics datasets. Functionally, USP1 overexpression significantly enhanced the malignant behaviors in HCC cell lines and spheroids in vitro, as well as the zebrafish model and the xenograft model in vivo. In contrast, genetic ablation or pharmacological inhibition of USP1 dramatically impaired the phenotypes of HCC cells. Specifically, ectopic USP1 enhanced aggressive properties and metabolic reprogramming of HCC cells by modulating mitochondrial dynamics. Mechanistically, USP1 induced mitochondrial fission by enhancing phosphorylation of Drp1 at Ser616 via deubiquitination and stabilization of cyclin-dependent kinase 5 (CDK5), which could be degraded by the E3 ligase NEDD4L. The USP1/CDK5 modulatory axis was activated in HCC tissues, which was correlated with poor prognosis of HCC patients. Furthermore, Prasugrel was identified as a candidate USP1 inhibitor for targeting the phenotypes of HCC by an extensive computational study combined with experimental validations. Taken together, USP1 induced malignant phenotypes and metabolic reprogramming by modulating mitochondrial dynamics in a CDK5-mediated Drp1 phosphorylation manner, thereby deteriorating HCC progression.

11.
Med Sci Monit ; 30: e944526, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39033318

ABSTRACT

BACKGROUND The FOHAIC-1 trial showed hepatic arterial infusion chemotherapy with infusional fluorouracil, leucovorin, and oxaliplatin (HAIC-FO) improved survival, compared with sorafenib, in patients with advanced hepatocellular carcinoma (HCC). The aim of this study was to conduct a cost-effectiveness comparison between HAIC-FO and sorafenib from the perspective of the Chinese healthcare system. MATERIAL AND METHODS The economic evaluation was conducted between July 2023 and February 2024, spanning a 10-year investment horizon. A Markov model was developed to perform a cost-effectiveness analysis of HAIC-FO vs sorafenib. Health states incorporated in the model comprised progression-free disease, progressed disease, and death. Transition probabilities were derived from data obtained from the FOHAIC-1 trial. Incremental cost-effectiveness ratio (ICER) was calculated to evaluate cost-effectiveness. Additionally, one-way and probabilistic sensitivity analyses assessed the model's robustness. RESULTS The HAIC-FO group accrued a total cost of $22,781, whereas the sorafenib group totaled $18,795. In terms of effectiveness, the HAIC-FO group achieved 1.06 quality-adjusted life years (QALYs), whereas the sorafenib group attained 0.65 QALYs. Compared with sorafenib, HAIC-FO yielded an additional 0.41 QALYs at a cost of additional $3,985, resulting in an incremental cost of $9,720 per QALY gained. The one-way sensitivity analysis revealed the final ICER remained below the willingness-to-pay (WTP) threshold of $30,492 per QALY, when considering parameter fluctuations. Additionally, probabilistic sensitivity analysis indicated a 99.8% probability that the ICER for HAIC-FO compared with sorafenib would fall below the WTP threshold. CONCLUSIONS Compared with sorafenib, HAIC-FO emerged as a cost-effective first-line treatment option for patients facing advanced HCC in China.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Hepatocellular , Cost-Benefit Analysis , Liver Neoplasms , Oxaliplatin , Quality-Adjusted Life Years , Sorafenib , Humans , Sorafenib/therapeutic use , Sorafenib/economics , Sorafenib/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/economics , Liver Neoplasms/drug therapy , Liver Neoplasms/economics , China , Antineoplastic Combined Chemotherapy Protocols/economics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Oxaliplatin/therapeutic use , Oxaliplatin/economics , Oxaliplatin/administration & dosage , Fluorouracil/economics , Fluorouracil/therapeutic use , Fluorouracil/administration & dosage , Markov Chains , Leucovorin/economics , Leucovorin/therapeutic use , Hepatic Artery , Infusions, Intra-Arterial/economics , Male , Antineoplastic Agents/economics , Antineoplastic Agents/therapeutic use , Female , Cost-Effectiveness Analysis
12.
Langmuir ; 40(29): 14863-14871, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38995689

ABSTRACT

Nickel-rich layered oxide cathodes, such as LiNi0.5Co0.2Mn0.3O2 (NCM523), are prevalent in high-power batteries owing to their high energy density. However, these cathodes suffer from undesirable side reactions occurring at the cathode/liquid electrolyte interface, leading to inferior interface stability and poor cycle life. To address these issues, herein, an amphiphilic diblock copolymer poly(dimethylsiloxane)-block-poly(acrylic acid) (PDMS-b-PAA) along with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is utilized for modifying the electrode surface. This modification causes a thin and stable cathode-electrolyte interface (CEI) on the surface of NCM523 particles, as evidenced by XPS, TEM, and EIS analysis. The introduction of this modified interface successfully suppresses the capacity fading of NCM523. After 200 cycles at a rate of 1.0 C, the capacity of the modified NCM523 cathode is 108.7 mAh g-1, with a capacity retention of 82.8%, while the control samples without the polymer modification display a capacity retention of 72.7%. These results outline the distinct advantage of electrode surface modification with diblock copolymers/LiTFSI for the stabilization of Ni-rich layered oxide cathodes.

13.
J Asian Nat Prod Res ; : 1-16, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975979

ABSTRACT

Three chromomycin derivatives, chromomycins A3 (1, CA3), A5 (2, CA5), and monodeacetylchromomycin A3 (3, MDA-CA3), were identified from the soil-derived Streptomyces sp. CGMCC 26516. A reinvestigation of the structure of CA5 is reported, of which the absolute configuration was unambiguously determined for the first time to be identical with that of CA3 based on nuclear magnetic resonance (NMR) data analysis as well as NMR and electronic circular dichroism calculations. Compounds 1-3 showed potent cytotoxicity against the non-small-cell lung cancer (NSCLC) cells (A549, H460, H157-c-FLIP, and H157-LacZ) and down-regulated the protein expression of c-FLIP in A549 cells. The IC50 values of chromomycins in H157-c-FLIP were higher than that in H157-LacZ. Furthermore, si-c-FLIP promoted anti-proliferation effect of chromomycins in NSCLC cells. In nude mice xenograft model, 1 and 2 both showed more potent inhibition on the growth of H157-lacZ xenografts than that of H157-c-FLIP xenografts. These results verify that c-FLIP mediates the anticancer effects of chromomycins in NSCLC.

14.
Front Med (Lausanne) ; 11: 1415545, 2024.
Article in English | MEDLINE | ID: mdl-38988359

ABSTRACT

Acquired reactive perforating collagenosis (ARPC) is a rare dermatological disorder condition defined by the perforation of altered collagen fibers through the epidermis. The presence of underlying conditions such as diabetes or renal disease is helpful in the ARPC diagnosis. Although skin rashes related to ARPC have been reported, the exact causative factors and mechanisms remain unclear. Here, we present a unique case of ARPC triggered by trauma in a 67-year-old male without concurrent systemic alterations. The diagnosis of ARPC with eosinophilia was made following comprehensive diagnostic testing, including clinical presentation, histological results, and blood tests, ruling out other possible diseases. Intriguingly, the histopathological examination revealed collagen penetration into the epidermis at different tissue sections. In addition, we reviewed existing literature on ARPC, which documented the causation. To help confirm the diagnosis, clinicians have to pay attention to traumatic triggers for ARPC and its rare manifestation with eosinophilia.

15.
Nat Commun ; 15(1): 5678, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971858

ABSTRACT

Inherited non-hemolytic anemia is a group of rare bone marrow disorders characterized by erythroid defects. Although concerted efforts have been made to explore the underlying pathogenetic mechanisms of these diseases, the understanding of the causative mutations are still incomplete. Here we identify in a diseased pedigree that a gain-of-function mutation in toll-like receptor 8 (TLR8) is implicated in inherited non-hemolytic anemia. TLR8 is expressed in erythroid lineage and erythropoiesis is impaired by TLR8 activation whereas enhanced by TLR8 inhibition from erythroid progenitor stage. Mechanistically, TLR8 activation blocks annexin A2 (ANXA2)-mediated plasma membrane localization of STAT5 and disrupts EPO signaling in HuDEP2 cells. TLR8 inhibition improves erythropoiesis in RPS19+/- HuDEP2 cells and CD34+ cells from healthy donors and inherited non-hemolytic anemic patients. Collectively, we identify a gene implicated in inherited anemia and a previously undescribed role for TLR8 in erythropoiesis, which could potentially be explored for therapeutic benefit in inherited anemia.


Subject(s)
Anemia , Erythropoiesis , Toll-Like Receptor 8 , Humans , Erythropoiesis/genetics , Toll-Like Receptor 8/metabolism , Toll-Like Receptor 8/genetics , Female , Anemia/genetics , Male , Pedigree , Erythropoietin/metabolism , Erythropoietin/genetics , Adult , Signal Transduction , Mutation , Erythroid Cells/metabolism , Animals , Erythroid Precursor Cells/metabolism
16.
Methods Enzymol ; 701: 425-455, 2024.
Article in English | MEDLINE | ID: mdl-39025578

ABSTRACT

Adhesion of cell membranes involves multi-scale phenomena, ranging from specific molecular binding at Angstrom scale all the way up to membrane deformations and phase separation at micrometer scale. Consequently, theory and simulations of cell membrane adhesion require multi-scale modeling and suitable approximations that capture the essential physics of these phenomena. Here, we present a mesoscale model for membrane adhesion which we have employed in a series of our recent studies. This model quantifies, in particular, how nanoscale lipid clusters physically affect and respond to the intercellular receptor-ligand binding that mediates membrane adhesion. The goal of this Chapter is to present all details and subtleties of the mean-field theory and Monte Carlo simulations of this mesoscale model, which can be used to further explore physical phenomena related to cell membrane adhesion.


Subject(s)
Cell Adhesion , Cell Membrane , Monte Carlo Method , Cell Membrane/chemistry , Cell Membrane/metabolism , Computer Simulation , Models, Biological , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism
17.
Diagn Pathol ; 19(1): 92, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961434

ABSTRACT

AIMS: Vitiligo is a chronic dermatological condition characterized by the progressive loss of melanocytes, for which traditional therapy has shown limited efficacy. This study aimed to establish a vitiligo model with easy operability, high repeatability, and stable depigmentation to provide a foundation for studying the pathogenesis and developing novel therapies for vitiligo. METHODS: (1) Establishing vitiligo model: Firstly, deliver B16F10 cells to the back skin of C57BL/6 J via intradermal injection (day 0), and the CD4 depletion antibody was injected intraperitoneally on day 4 and 10. Secondly, the melanoma was surgically removed on day 12. Thirdly, CD8 antibody was administered intraperitoneally every fourth day till day 30. (2) Identification of vitiligo model: H&E staining, immunohistochemistry, and immunofluorescence were used to detect the melanocytes. The melanin was detected by transmission electron microscopy (TEM), Lillie ferrous sulfate staining and L-DOPA staining. RESULTS: (1) The back skin and hair began to appear white on day 30. Melanin loss reached peak on day 60; (2) Hematoxylin and eosin (H&E) staining, immunohistochemistry and immunofluorescence results showed melanocytes were reduced. L-DOPA staining, Lillie ferrous sulfate staining and TEM results showed that melanin decreased in the epidermis. CONCLUSION: We successfully establishment a vitiligo mouse model which can be more capable to simulate the pathogenesis of human vitiligo and provide an important basis for the study of pathogenesis and therapy of vitiligo.


Subject(s)
Disease Models, Animal , Melanocytes , Mice, Inbred C57BL , Vitiligo , Animals , Vitiligo/pathology , Vitiligo/metabolism , Vitiligo/therapy , Melanocytes/pathology , Melanocytes/metabolism , Mice , Melanins/metabolism
18.
Anal Methods ; 16(29): 4951-4959, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38973573

ABSTRACT

Glutathione (GSH) is commonly used as a diagnostic biomarker for many diseases. In this study, based on carbon quantum dots prepared from dragon fruit peel (D-CQDs) and the T-Hg(II)-T mismatch, a dual-mode biosensor was developed for the detection of GSH. This system consists of two single-stranded DNA (ssDNA). DNA1 was the T-rich sequence; DNA2 was attached to streptavidin-coated magnetic beads and consisted of T-rich and G-rich fragments. Due to the presence of Hg(II), the T-Hg(II)-T mismatch was formed between T-rich fragments of two ssDNA. In the presence of GSH, Hg(II) detached from dsDNA and bound with GSH to form a new complex. The G-rich fragment assembled with the hemin shed from D-CQDs to form the G-quadruplex/hemin complex. At this time, in fluorescence mode, the fluorescence of D-CQDs quenched by hemin could be restored. In colorimetric mode, after the magnetic beads separate, a visual signal could be produced by catalyzing the oxidation of ABTS using the peroxide-like activity of the G-quadruplex/hemin complex. This biosensor in both fluorescence mode and colorimetric mode had excellent selectivity and sensitivity, and the limit of detection was 0.089 µM and 0.26 µM for GSH, respectively. Moreover, the proposed dual-mode biosensor had good application prospects for detection of GSH.


Subject(s)
Biosensing Techniques , Carbon , Fruit , Glutathione , Quantum Dots , Quantum Dots/chemistry , Biosensing Techniques/methods , Glutathione/chemistry , Glutathione/analysis , Carbon/chemistry , Fruit/chemistry , DNA, Single-Stranded/chemistry , Mercury/analysis , Mercury/chemistry , Limit of Detection , Base Pair Mismatch , Humans , G-Quadruplexes , Cactaceae
19.
Dev Cell ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39029469

ABSTRACT

The intermitochondrial cement (IMC) is a prominent germ granule that locates among clustered mitochondria in mammalian germ cells. Serving as a key platform for Piwi-interacting RNA (piRNA) biogenesis; however, how the IMC assembles among mitochondria remains elusive. Here, we identify that Tudor domain-containing 1 (TDRD1) triggers IMC assembly via phase separation. TDRD1 phase separation is driven by the cooperation of its tetramerized coiled-coil domain and dimethylarginine-binding Tudor domains but is independent of its intrinsically disordered region. TDRD1 is recruited to mitochondria by MILI and sequentially enhances mitochondrial clustering and triggers IMC assembly via phase separation to promote piRNA processing. TDRD1 phase separation deficiency in mice disrupts IMC assembly and piRNA biogenesis, leading to transposon de-repression and spermatogenic arrest. Moreover, TDRD1 phase separation is conserved in vertebrates but not in invertebrates. Collectively, our findings demonstrate a role of phase separation in germ granule formation and establish a link between membrane-bound organelles and membrane-less organelles.

20.
Adv Appl Microbiol ; 128: 83-104, 2024.
Article in English | MEDLINE | ID: mdl-39059844

ABSTRACT

Fatty acids and their derivatives are indispensable biomolecules in all organisms, and can be used as intermediates in the synthesis of pharmaceuticals, biofuels and pesticides, and thus their demand has increased dramatically in recent years. In addition to serving as structural components of cell membranes and metabolic energy, fatty acids and their derivatives can also be used as signal transduction and regulatory bioactive molecules to regulate cell functions. Biosynthesis of fatty acids and their derivatives through microbial catalysis provides green and alternative options to meet the goal. However, the low biosynthetic titer of fatty acids and their derivatives limits their industrial production and application. In this review, we first summarize the metabolic pathways and related enzymes of fatty acids and their derivatives biosynthesis. Then, the strategies and research progress of biosynthesis of fatty acids and derivatives through metabolic and enzyme engineering were reviewed. The biosynthesis of saturated fatty acids (medium chain fatty acids and long chain fatty acids), bioactive fatty acids (PUFAs, oxylipins, ether lipids), and their derivatives with microbial and enzymatic catalysis were respectively summarized. Finally, synthetic biology strategies to improve fatty acids and their derivatives production through enzyme rational design, carbon metabolism flux, cofactors balance, and metabolic pathways design were discussed. The review provides references and prospects for fatty acids and their derivatives biosynthesis and industrial production.


Subject(s)
Fatty Acids , Metabolic Engineering , Metabolic Networks and Pathways , Synthetic Biology , Fatty Acids/biosynthesis , Fatty Acids/metabolism , Synthetic Biology/methods , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Bacteria/metabolism , Bacteria/genetics , Biosynthetic Pathways
SELECTION OF CITATIONS
SEARCH DETAIL