Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 308
Filter
1.
Beilstein J Nanotechnol ; 15: 694-703, 2024.
Article in English | MEDLINE | ID: mdl-38919165

ABSTRACT

Multifrequency atomic force microscopy (AFM) utilizes the multimode operation of cantilevers to achieve rapid high-resolution imaging and extract multiple properties. However, the higher-order modal response of traditional rectangular cantilever is weaker in air, which affects the sensitivity of multifrequency AFM detection. To address this issue, we previously proposed a bridge/cantilever coupled system model to enhance the higher-order modal response of the cantilever. This model is simpler and less costly than other enhancement methods, making it easier to be widely used. However, previous studies were limited to theoretical analysis and preliminary simulations regarding ideal conditions. In this paper, we undertake a more comprehensive investigation of the coupled system, taking into account the influence of probe and excitation surface sizes on the modal response. To facilitate the exploration of the effectiveness and optimal conditions for the coupled system in practical applications, a macroscale experimental platform is established. By conducting finite element analysis and experiments, we compare the performance of the coupled system with that of traditional cantilevers and quantify the enhancement in higher-order modal response. Also, the optimal conditions for the enhancement of macroscale cantilever modal response are explored. Additionally, we also supplement the characteristics of this model, including increasing the modal frequency of the original cantilever and generating additional resonance peaks, demonstrating the significant potential of the coupled system in various fields of AFM.

2.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1833-1844, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914494

ABSTRACT

Protein folding and quality control processes primarily occur in the endoplasmic reticulum (ER). ER-resident molecular chaperones play a crucial role in guiding nascent polypeptides towards their correct tertiary structures. Some of these chaperones specifically recognize glucosylated N-glycan moieties on peptide. It is of great significance to study the N-glycan biosynthetic pathway and glycoprotein quality control system by analyzing the sugar donor of ER luminal glucosyltransferases, known as dolichol phosphate glucose (Dol-P-Glc), or its analogues in vitro. In this study, we investigated a range of dolichol analogues to synthesize lipid phosphate glucose, which served as substrates for dolichyl-phosphate ß-glucosyltransferase E (Alg5E) derived from Trichomonas vaginalis. The results demonstrated that the recombinant Alg5E, expressed in Escherichia coli, exhibited strong catalytic activity and the ability to recognize lipid phosphate glucose with varying chain lengths. Interestingly, the enzyme's catalytic reaction was found to be faster with longer carbon chains in the substrate. Additionally, Alg5E showed a preference for branched chain methyl groups in the lipid structure. Furthermore, our study confirmed the importance of divalent metal ions in the binding of the crucial DXD motif, which is essential for the enzyme's catalytic function. These findings lay the groundwork for future research on glucosyltransferases Alg6, Alg8, and Alg10 in the synthesis pathway of dolichol-linked oligosaccharide (DLO).


Subject(s)
Glucosyltransferases , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Substrate Specificity , Escherichia coli/genetics , Escherichia coli/metabolism , Trichomonas vaginalis/enzymology , Trichomonas vaginalis/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Dolichol Phosphates/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/enzymology
3.
Nat Commun ; 15(1): 5157, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886340

ABSTRACT

The eukaryotic asparagine (N)-linked glycan is pre-assembled as a fourteen-sugar oligosaccharide on a lipid carrier in the endoplasmic reticulum (ER). Seven sugars are first added to dolichol pyrophosphate (PP-Dol) on the cytoplasmic face of the ER, generating Man5GlcNAc2-PP-Dol (M5GN2-PP-Dol). M5GN2-PP-Dol is then flipped across the bilayer into the lumen by an ER translocator. Genetic studies identified Rft1 as the M5GN2-PP-Dol flippase in vivo but are at odds with biochemical data suggesting Rft1 is dispensable for flipping in vitro. Thus, the question of whether Rft1 plays a direct or an indirect role during M5GN2-PP-Dol translocation has been controversial for over two decades. We describe a completely reconstituted in vitro assay for M5GN2-PP-Dol translocation and demonstrate that purified Rft1 catalyzes the translocation of M5GN2-PP-Dol across the lipid bilayer. These data, combined with in vitro results demonstrating substrate selectivity and rft1∆ phenotypes, confirm the molecular identity of Rft1 as the M5GN2-PP-Dol ER flippase.


Subject(s)
Endoplasmic Reticulum , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Biological Transport , Oligosaccharides/metabolism , Dolichol Phosphates/metabolism , Dolichol Phosphates/genetics , Lipid Bilayers/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Intracellular Membranes/metabolism , Lipopolysaccharides
4.
J Thorac Dis ; 16(4): 2539-2549, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738241

ABSTRACT

Background: A rapid and precise etiological diagnosis is crucial for the effective treatment of bloodstream infection (BSI). In this study, the performance of probe capture-based targeted next-generation sequencing (tNGS) was compared to that of blood culture and metagenomic next-generation sequencing (mNGS) in detecting potential pathogens in patients with BSI. Methods: A total of 80 patients with suspected BSI were prospectively enrolled from 24 November 2023 to 30 December 2023 at Zhongshan Hospital, Shanghai, China. All 80 participants underwent simultaneous blood culture, blood mNGS, and blood tNGS after admission when febrile, and the results were compared. Results: Among the 80 participants, 11 were clinically diagnosed with noninfectious fever, and 69 were diagnosed with BSI. Blood tNGS had a higher sensitivity for the diagnosis of BSI than blood culture (91.3% vs. 23.2%, P<0.001) and blood mNGS (91.3% vs. 69.6%, P=0.001). There was no significant difference in specificity between blood mNGS and tNGS (81.8% vs. 100.0%, P=0.13). Blood tNGS demonstrated a faster turnaround time than blood culture and blood mNGS. In 22 (31.9%) patients with BSI, targeted adjustment of the anti-infectious therapy according to the blood tNGS results resulted in clinical improvement. Conclusions: Blood tNGS may be a promising tool for detecting potential pathogens in patients with BSI. The application of blood tNGS for BSI could guide anti-infectious treatment strategies and might improve clinical outcomes.

5.
J Thorac Dis ; 16(4): 2499-2509, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738251

ABSTRACT

Background: As a culture-independent method, metagenomic next-generation sequencing (mNGS) is widely used in microbiological diagnosis with advantages in identifying potential pathogens, guiding antibiotic therapy, and improving clinical prognosis, especially in culture-negative cases. Mycoplasma hominis (M. hominis) mediastinitis is a rare and severe disease for which etiological diagnosis is important but challenging. The application of mNGS in the etiological diagnosis of mediastinitis has seldom been studied. Methods: By searching the electronic medical history retrieval system with "Mycoplasma hominis" and "mediastinitis", seven patients diagnosed with M. hominis mediastinitis were reviewed in Zhongshan Hospital, Fudan University, Shanghai from 9 December 2020 to 14 February 2023. Microbiological cultures and mNGS were conducted for blood, abscess, and/or mediastinal fluid. Adjustment of the antibiotic therapy due to mNGS was assessed. A literature review was conducted in the PubMed database beginning in 1970 for M. hominis infection and mediastinitis. Results: For the seven patients, cultures of blood, abscess, and mediastinal fluid were negative whereas mNGS identified M. hominis in serum, abscess, and/or mediastinal fluid and was used to guide specific antibiotic therapy. The stringent mapped reads number of genera (SMRNG), stringent mapped reads number of species (SMRN), and coverage rate of M. hominis detection by mNGS were significantly higher in body fluid (abscess or mediastinal fluid) than in serum. All seven patients had underlying heart diseases and underwent previous cardiac surgery. The most common symptoms were fever and sternal pain. After detection of M. hominis, antibiotics were adjusted to quinolones or doxycycline except for one patient, whose diagnosis was clarified after death. Two patients died. Literature review since 1970 identified 30 cases of extra-genital infection caused by M. hominis. Including our seven new cases, 2 (5.4%) were neonates and 35 (94.6%) were adults. Thirty (81.1%) cases were postoperative infection and 15 (40.5%) had implanted devices. Five patients (13.5%) died. Conclusions: mNGS might be a promising technology in the detection of fastidious pathogens such as M. hominis. Accurate etiological diagnosis by mNGS could guide antibiotic therapy and facilitate clinical management.

6.
Front Bioeng Biotechnol ; 12: 1398189, 2024.
Article in English | MEDLINE | ID: mdl-38803847

ABSTRACT

Cytotoxicity assays are crucial for assessing the efficacy of drugs in killing cancer cells and determining their potential therapeutic value. Measurement of the effect of drug concentration, which is an influence factor on cytotoxicity, is of great importance. This paper proposes a cytotoxicity assay using microwave sensors in an end-point approach based on the detection of the number of live cells for the first time. In contrast to optical methods like fluorescent labeling, this research uses a resonator-type microwave biosensor to evaluate the effects of drug concentrations on cytotoxicity by monitoring electrical parameter changes due to varying cell densities. Initially, the feasibility of treating cells with ultrapure water for cell counting by a microwave biosensor is confirmed. Subsequently, inhibition curves generated by both the CCK-8 method and the new microwave biosensor for various drug concentrations were compared and found to be congruent. This agreement supports the potential of microwave-based methods to quantify cell growth inhibition by drug concentrations.

7.
Animals (Basel) ; 14(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791655

ABSTRACT

The two existing clades of Galloanseres, orders Galliformes (landfowl) and Anseriformes (waterfowl), exhibit dramatically different evolutionary trends. Mitochondria serve as primary sites for energy production in organisms, and numerous studies have revealed their role in biological evolution and ecological adaptation. We assembled the complete mitogenome sequences of two species of the genus Aythya within Anseriformes: Aythya baeri and Aythya marila. A phylogenetic tree was constructed for 142 species within Galloanseres, and their divergence times were inferred. The divergence between Galliformes and Anseriformes occurred ~79.62 million years ago (Mya), followed by rapid evolution and diversification after the Middle Miocene (~13.82 Mya). The analysis of selective pressure indicated that the mitochondrial protein-coding genes (PCGs) of Galloanseres species have predominantly undergone purifying selection. The free-ratio model revealed that the evolutionary rates of COX1 and COX3 were lower than those of the other PCGs, whereas ND2 and ND6 had faster evolutionary rates. The CmC model also indicated that most PCGs in Anseriformes exhibited stronger selective constraints. Our study suggests that the distinct evolutionary trends and energy requirements of Galliformes and Anseriformes drive different evolutionary patterns in the mitogenome.

8.
Biosensors (Basel) ; 14(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38667173

ABSTRACT

Since different quantities of white blood cells (WBCs) in solution possess an adaptive osmotic pressure of cells, the WBCs themselves and in solution have similar concentrations, resulting in them having similar dielectric properties. Therefore, a microwave sensor could have difficulty in sensing the quantity variation when WBCs are in solution. This paper presents a highly sensitive, linear permittivity-inspired microwave biosensor for WBCs, counting through the evaporation method. Such a measurement method is proposed to record measurements after the cell solution is dripped onto the chip and is completely evaporated naturally. The proposed biosensor consists of an air-bridged asymmetric differential inductor and a centrally located circular fork-finger capacitor fabricated on a GaAs substrate using integrated passive fabrication technology. It is optimized to feature a larger sensitive area and improved Q-factor, which increases the effective area of interaction between cells and the electromagnetic field and facilitates the detection of their changes in number. The sensing relies on the dielectric properties of the cells and the change in the dielectric constant for different concentrations, and the change in resonance properties, which mainly represents the frequency shift, corresponds to the macroscopic change in the concentration of the cells. The microwave biosensors are used to measure biological samples with concentrations ranging from 0.25 × 106 to 8 × 106 cells per mL in a temperature (26.00 ± 0.40 °C) and humidity (54.40 ± 3.90 RH%) environment. The measurement results show a high sensitivity of 25.06 Hz/cells·mL-1 with a highly linear response of r2 = 0.99748. In addition, a mathematical modeling of individual cells in suspension is performed to estimate the dielectric constant of individual cells and further explain the working mechanism of the proposed microwave biosensor.


Subject(s)
Biosensing Techniques , Humans , Leukocyte Count , Leukocytes/cytology , Microwaves
9.
Ultramicroscopy ; 261: 113964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579523

ABSTRACT

Compressive sensing (CS) can reconstruct the rest information almost without distortion by advanced computational algorithm, which significantly simplifies the process of atomic force microscope (AFM) scanning with high imaging quality. In common CS-AFM, the partial measurements randomly come from the whole region to be measured, which easily leads to detail loss and poor image quality in regions of interest (ROIs). Consequently, important microscopic phenomena are missed probably. In this paper, we developed an adaptive under-sampling strategy for CS-AFM to optimize the process of sampling. Under a certain under-sampling ratio, the weight coefficient of ROIs and regions of base (ROBs) were set to control the distribution of under-sampling points and corresponding measurement matrix. A series of simulations were completed to demonstrate the relationship between the weight coefficient of ROIs and image quality. After that, we verified the effectiveness of the method on our homemade AFM. Through a lot of simulations and experiments, we demonstrated how the proposed method optimized the sampling process of CS-AFM, which speeded up the process of AFM imaging with high quality.

10.
Sci Total Environ ; 923: 171332, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447716

ABSTRACT

The synergy between bacteria and fungi is a key determinant of soil health and have a positive effect on plant development under drought conditions, with the potentially enhancing the sustainability of amending soil with natural materials. However, identifying how soil amendments influence plant growth is often difficult due to the complexity of microorganisms and their links with different soil amendment types and environmental factors. To address this, we conducted a field experiment to examine the impact of soil amendments (biochar, Bacillus mucilaginosus, Bacillus subtilis and super absorbent polymer) on plant growth. We also assessed variations in microbial community, links between fungi and bacteria, and soil available nutrients, while exploring how the synergistic effects between fungus and bacteria influenced the response of soil amendments to plant growth. This study revealed that soil amendments reduced soil bacterial diversity but increased the proportion of the family Enterobacteriaceae, Nitrosomonadaceae, and also increased soil fungal diversity and the proportion of the sum of the family Lasiosphaeriaceae, Chaetomiaceae, Pleosporaceae. Changes in soil microbial communities lead to increase the complexity of microbial co-occurrence networks. Furthermore, this heightened network complexity enhanced the synergy of soil bacteria and fungi, supporting bacterial functions related to soil nutrient cycling, such as metabolic functions and genetic, environmental, and cellular processes. Hence, the BC and BS had 3.0-fold and 0.5-fold greater root length densities than CK and apple tree shoot growth were increased by 62.14 %,50.53 % relative to CK, respectively. In sum, our results suggest that the synergistic effect of bacteria and fungi impacted apple tree growth indirectly by modulating soil nutrient cycling. These findings offer a new strategy for enhancing the quality of arable land in arid and semi-arid regions.


Subject(s)
Microbiota , Soil , Bacteria/metabolism , Nutrients , Fungi/metabolism , Soil Microbiology
11.
J Sci Food Agric ; 104(9): 5603-5613, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38363126

ABSTRACT

BACKGROUND: Acidic lipases with high catalytic activities under acidic conditions have important application values in the food, feed and pharmaceutical industries. However, the availability of acidic lipases is still the main obstacle to their industrial applications. Although a novel acidic lipase Rasamsonia emersonii (LIPR) was heterologously expressed in Escherichia coli, the expression level was unsatisfactory. RESULTS: To achieve the high-efficiency expression and secretion of LIPR in Pichia pastoris GS115, the combinatorial optimization strategy was adopted including gene codon preference, signal peptide, molecular chaperone co-expression and disruption of vacuolar sorting receptor VPS10. The activity of the combinatorial optimization engineered strain in a shake flask reached 1480 U mL-1, which was 8.13 times greater than the P. pastoris GS115 parental strain. After high-density fermentation in a 5-L bioreactor, the highest enzyme activity reached as high as 11 820 U mL-1. LIPR showed the highest activity at 40 °C and pH 4.0 in the presence of Ca2+ ion. LIPR exhibited strong tolerance to methanol, indicating its potential application in biodiesel biosynthesis. Moreover, the gastrointestinal digestion simulation results demonstrated that LIPR was tolerant to pepsin and trypsin, but its activity was inhibited by sodium taurodeoxycholate. CONCLUSION: This study provided an effective approach for the high expression of acidic lipase LIPR. LIPR was more appropriate for lipid digestion in the stomach than in intestine according to the gastrointestinal digestion simulation results. © 2024 Society of Chemical Industry.


Subject(s)
Digestion , Fungal Proteins , Lipase , Lipase/genetics , Lipase/metabolism , Lipase/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/enzymology , Hydrogen-Ion Concentration , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Gene Expression , Enzyme Stability , Pichia/genetics , Pichia/metabolism , Humans , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Models, Biological , Fermentation
12.
J Biochem ; 176(1): 23-34, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38382634

ABSTRACT

Cancer antigen 125 (CA125) is a serum marker associated with ovarian cancer. Despite its widespread use, CA125 levels can also be elevated in benign conditions. Recent reports suggest that detecting serum CA125 that carries the Tn antigen, a truncated O-glycan containing only N-acetylgalactosamine on serine or threonine residues, can improve the specificity of ovarian cancer diagnosis. In this study, we engineered cells to express CA125 with a Tn antigen. To achieve this, we knocked out C1GALT1 and SLC35A1, genes encoding Core1 synthase and a transporter for cytidine-5'-monophospho-sialic acid respectively, in human embryonic kidney 293 (HEK293) cells. In ClGALT1-SLC35A1-knockout (KO) cells, the expression of the Tn antigen showed a significant increase, whereas the expression of the T antigen (galactose-ß1,3-N-acetylgalactosamine on serine or threonine residues) was decreased. Due to the inefficient secretion of soluble CA125, we employed a glycosylphosphatidylinositol (GPI) anchoring system. This allowed for the expression of GPI-anchored CA125 on the cell surface of ClGALT1-SLC35A1-KO cells. Cells expressing high levels of GPI-anchored CA125 were then enriched through cell sorting. By knocking out the PGAP2 gene, the GPI-anchored form of CA125 was converted to a secretory form. Through the engineering of O-glycans and the use of a GPI-anchoring system, we successfully produced CA125 with Tn antigen modification.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate , CA-125 Antigen , Galactosyltransferases , Glycosylphosphatidylinositols , Humans , Antigens, Tumor-Associated, Carbohydrate/metabolism , CA-125 Antigen/metabolism , HEK293 Cells , Glycosylphosphatidylinositols/metabolism , Galactosyltransferases/metabolism , Galactosyltransferases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female
13.
Front Biosci (Landmark Ed) ; 29(1): 3, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38287800

ABSTRACT

BACKGROUND: Colorectal cancer liver metastasis (CRLM) and hepatocellular carcinoma (HCC) are both high incidence tumors in China. In certain poorly differentiated cases they can exhibit comparable imaging and pathological characteristics, which impedes accurate clinical diagnosis. The use of protein-based techniques with tissue slides offers a more precise means to assess pathological changes and has the potential to assist with tumor diagnosis. METHODS: A simple in situ protein digestion protocol was established for protein fingerprint analysis of paraffin-embedded tissue slide samples. Additionally, machine learning techniques were employed to construct predictive models for CRLM and HCC. The accuracy of these models was validated using tissue slides and a clinical database. RESULTS: Analysis of differential protein expression between CRLM and HCC groups reliably identified 977 proteins. Among these, 53 were highly abundant in CRLM samples and 57 were highly abundant in HCC samples. A prediction model based on the expression of six proteins (CD9, GSTA1, KRT20, COL1A2, AKR1C3, and HIST2H2BD) had an area under curve (AUC) of 0.9667. This was further refined to three proteins (CD9, ALDH1A1, and GSTA1) with an AUC of 0.9333. CONCLUSIONS: Tissue slide proteomics can facilitate accurate differentiation between CRLM and HCC. This methodology holds great promise for improving clinical tumor diagnosis and for identifying novel markers for challenging pathological specimens.


Subject(s)
Carcinoma, Hepatocellular , Colorectal Neoplasms , Liver Neoplasms , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , Proteomics , Colorectal Neoplasms/metabolism , China
14.
Cell Oncol (Dordr) ; 47(1): 113-128, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37578594

ABSTRACT

BACKGROUND: Metabolic reprogramming is closely related to the development of gastric cancer (GC), which remains as the fourth leading cause of cancer-related death worldwide. As a tumor suppressor for GC, whether receptor for activated C-kinase 1 (RACK1) play a modulatory role in metabolic reprogramming remains largely unclear. METHODS: GC cell lines and cell-derived xenograft mouse model were used to identify the biological function of RACK1. Flow cytometry and Seahorse assays were applied to examine cell cycle and oxygen consumption rate (OCR), respectively. Western blot, real-time PCR and autophagy double fluorescent assays were utilized to explore the signaling. Immunohistochemistry was performed to detect the expression of RACK1 and other indicators in tissue sections. RESULTS: Loss of RACK1 facilitated the viability, colony formation, cell cycle progression and OCR of GC cells in a glutamine-dependent manner. Further investigation revealed that RACK1 knockdown inhibited the lysosomal degradation of Alanine-serine-cysteine amino acid transporter 2 (ASCT2). Mechanistically, depletion of RACK1 remarkably decreased PTEN expression through up-regulating miR-146b-5p, leading to the activation of AKT/mTOR signaling pathway which dampened autophagy flux subsequently. Moreover, knockdown of ASCT2 could reverse the promotive effect of RACK1 depletion on GC tumor growth both in vitro and in vivo. Tissue microarray confirmed that RACK1 was negatively correlated with the expression of ASCT2 and p62, as well as the phosphorylation of mTOR. CONCLUSION: Together, our results demonstrate that the suppressive function of RACK1 in GC is associated with ASCT2-mediated glutamine metabolism, and imply that targeting RACK1/ASCT2 axis provides potential strategies for GC treatment.


Subject(s)
Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Glutamine/metabolism , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Receptors for Activated C Kinase/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
15.
J Agric Food Chem ; 71(51): 20826-20837, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38096130

ABSTRACT

Extracellular vesicles (EVs) are membrane-bound vesicles released by living cells. As vesicles for macromolecule transmission and intercellular communication, EVs are broadly applied in clinical diagnosis and biomimetic drug delivery. Milk-derived EVs (MEVs) are an ideal choice for scale-up applications because they exhibit biocompatibility and are easily obtained. Herein, intact glycopeptides in MEVs from bovines, caprines, porcines, and humans were comprehensively analyzed by high-resolution mass spectrometry using the sceHCD, followed by the EThcD fragment method, revealing that protein glycosylation is abundant and heterogeneous in MEVs. The dominant glycans in all MEVs were sialic acid-modified N-linked glycans (over 50%). A couple of species-specific glycans were also characterized, which are potentially markers of different original EVs. Interestingly, the Neu5Gc-modified glycans were enriched in caprine milk-derived EVs (58 ± 2%). Heterogeneity of MEV protein glycosylation was observed for glycosites and glycan compositions, and the structural heterogeneity of protein glycosylation was also identified and validated. The glycosignatures of EV biogenesis- and endocytosis-related proteins (CD63 and MFGE8) were significantly different in these four species. Overall, we comprehensively characterized the glycosylation signature of MEVs from four different species and provided insight into protein glycosylation related to drug target delivery.


Subject(s)
Extracellular Vesicles , Milk, Human , Humans , Animals , Cattle , Swine , Glycosylation , Milk, Human/metabolism , Goats/metabolism , Extracellular Vesicles/metabolism , Polysaccharides/metabolism
16.
Cell Death Dis ; 14(12): 839, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110356

ABSTRACT

Imatinib (IM) has significantly improved the prognosis of gastrointestinal stromal tumor (GIST) patients, but some patients still have primary resistance to IM, and approximately half of patients develop acquired drug resistance within 2 years of treatment, necessitating exploration of new treatment strategies. Targeting ferroptosis as a novel approach to tumor treatment has gained attention. Yet, there is limited research on ferroptosis in GIST, and the underlying mechanism remains unclear. In this study, we revealed that IM increased lipid reactive oxygen species and intracellular Fe2+ levels, and decreased glutathione levels in GIST. This effect could be partially inhibited by Ferrostatin-1. Additionally, knocking down STUB1 and overexpressing GPX4 reversed the IM-induced ferroptosis effect. Moreover, STUB1 was identified as a novel E3 ubiquitin ligase of GPX4, promoting the ubiquitination at site K191 of GPX4. The combination of the GPX4 inhibitor RSL3 and IM synergistically induces ferroptosis, inhibiting GIST proliferation both in vivo and in vitro. Furthermore, STUB1 and GPX4 expression serve as independent prognostic factors for GIST. In conclusion, This study is the first to demonstrate that IM induces ferroptosis by promoting STUB1-mediated GPX4 ubiquitination in GIST, and the combination of RSL3 and IM emerges as a promising therapeutic strategy for GIST.


Subject(s)
Ferroptosis , Gastrointestinal Stromal Tumors , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/metabolism
17.
Technol Cancer Res Treat ; 22: 15330338231218163, 2023.
Article in English | MEDLINE | ID: mdl-38112409

ABSTRACT

PURPOSE: Collectin subfamily member 12, a transmembrane scavenger receptor C-type lectin, is aberrantly expressed in various cancers. However, its physiological role in gastric cancer remains somewhat unclear. This study aimed to investigate the Collectin subfamily member 12 expression pattern in human gastric cancer and its role in gastric cancer progression. METHODS: The Kaplan-Meier method was used for survival analysis. The univariate and multivariate Cox proportional hazards regression models were used to identify independent predictors for progression-free survival and overall survival. The effects of Collectin subfamily member 12 on gastric cancer cell proliferation, migration, invasion, and apoptosis were detected through the cell counting kit-8 assay, colony formation assay, wound healing assay, transwell assay, and flow cytometry analysis, respectively. Additionally, the correlation between Collectin subfamily member 12 expression and immune cell infiltration was analyzed through bioinformatics. RESULTS: Collectin subfamily member 12 was highly expressed in advanced gastric cancer (T3-T4, pathologic stage III-IV). High Collectin subfamily member 12 expression was correlated with a worse progression-free survival and overall survival in the gastric cancer patients. In vitro, cell line studies revealed that Collectin subfamily member 12 promoted gastric cancer cell proliferation, migration, and invasion and inhibited gastric cancer cell apoptosis. The bioinformatics analysis further demonstrated that the Collectin subfamily member 12 expression level positively correlated with infiltration of several immune cells, such as M2 macrophages, dendritic cells, neutrophils, and regulatory T cells, suggesting that Collectin subfamily member 12 may also play a role in suppressing tumor immune response in gastric cancer. CONCLUSIONS: Collectin subfamily member 12 was identified as a novel predictive marker and target for the clinical treatment of gastric cancer.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Prognosis , Biomarkers, Tumor/metabolism , Survival Analysis , Collectins , Cell Line, Tumor , Cell Proliferation/genetics , Receptors, Scavenger
18.
ACS Synth Biol ; 12(12): 3743-3753, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37991716

ABSTRACT

Soil microbial communities with reduced complexity are emerging as model systems for studying consortia-scale phenotypes. To establish synthetic biology tools for studying these communities in hard-to-image environmental materials, we evaluated whether a single member of a model soil consortium (MSC) can be programmed to report on gene expression without requiring matrix disruption. For these studies, we targeted a five-membered MSC that includes Dyadobacter fermentans, Ensifer adhaerens, Rhodococcus sp003130705, Streptomyces sp001905665, and Variovorax beijingensis. By coupling the expression of a methyl halide transferase to a constitutive promoter, we show that V. beijingensis can be programmed to synthesize methyl halides that accumulate in the soil headspace at levels that are ≥24-fold higher than all other MSC members across a range of environmentally relevant hydration conditions. We find that methyl halide production can report on an MSC promoter that is activated by changes in water potential, and we demonstrate that a synthetic gas signal can be read out directly using gas chromatography and indirectly using a soil-derived Methylorubrum that is programmed to produce a visual output in response to methyl halides. These tools will be useful for future studies that investigate how MSC responds to dynamic hydration conditions, such as drought and flood events induced by climate change, which can alter soil water potential and induce the release of stored carbon.


Subject(s)
Hydrocarbons, Brominated , Soil , Soil/chemistry , Water , Signal Transduction
19.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4135-4149, 2023 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-37877396

ABSTRACT

The biofilms formed by pathogenic microorganisms seriously threaten human health and significantly enhance drug resistance, which urgently call for developing drugs specifically targeting on biofilms. Chitooligosaccharides extracted from shrimp and crab shells are natural alkaline oligosaccharides with excellent antibacterial effects. Nevertheless, their inhibition efficacy on biofilms still needs to be improved. Spirulina (SP) is a microalga with negatively charged surface, and its spiral structure facilitates colonization in the depth of the biofilm. Therefore, the complex of Spirulina and chitooligosaccharides may play a synergistic role in killing pathogens in the depth of biofilm. This research first screened chitooligosaccharides with significant bactericidal effects. Subsequently, Spirulina@Chitooligosaccharides (SP@COS complex was prepared by combining chitooligosaccharides with Spirulina through electrostatic adsorption. The binding of the complex was characterized by zeta potential, z-average size, and fluorescence labeling. Ultraviolet-visible spectroscopy (UV-Vis) showed the encapsulation efficiency and the drug loading efficiency reached up to 90% and 16%, respectively. The prepared SP@COS2 exhibited a profound synergistic inhibition effect on bacterial and fungal biofilms, which was mainly achieved by destroying the cell structure of the biofilm. These results demonstrate the potential of Spirulina-chitooligosaccharides complex as a biofilm inhibitor and provide a new idea for addressing the harm of pathogenic microorganisms.


Subject(s)
Chitosan , Spirulina , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Chitosan/pharmacology , Biofilms , Chitin/pharmacology
20.
Nat Commun ; 14(1): 6371, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821460

ABSTRACT

Soil contamination is an environmental issue due to increasing anthropogenic activities. Existing processes for soil remediation suffer from long treatment time and lack generality because of different sources, occurrences, and properties of pollutants. Here, we report a high-temperature electrothermal process for rapid, water-free remediation of multiple pollutants in soil. The temperature of contaminated soil with carbon additives ramps up to 1000 to 3000 °C as needed within seconds via pulsed direct current input, enabling the vaporization of heavy metals like Cd, Hg, Pb, Co, Ni, and Cu, and graphitization of persistent organic pollutants like polycyclic aromatic hydrocarbons. The rapid treatment retains soil mineral constituents while increases infiltration rate and exchangeable nutrient supply, leading to soil fertilization and improved germination rates. We propose strategies for upscaling and field applications. Techno-economic analysis indicates the process holds the potential for being more energy-efficient and cost-effective compared to soil washing or thermal desorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...