Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Front Pharmacol ; 15: 1393717, 2024.
Article in English | MEDLINE | ID: mdl-38939838

ABSTRACT

Background: Mesaconitine (MA), a diester-diterpenoid alkaloid extracted from the medicinal herb Aconitum carmichaelii, is commonly used to treat various diseases. Previous studies have indicated the potent toxicity of aconitum despite its pharmacological activities, with limited understanding of its effects on the nervous system and the underlying mechanisms. Methods: HT22 cells and zebrafish were used to investigate the neurotoxic effects of MA both in vitro and in vivo, employing multi-omics techniques to explore the potential mechanisms of toxicity. Results: Our results demonstrated that treatment with MA induces neurotoxicity in zebrafish and HT22 cells. Subsequent analysis revealed that MA induced oxidative stress, as well as structural and functional damage to mitochondria in HT22 cells, accompanied by an upregulation of mRNA and protein expression related to autophagic and lysosomal pathways. Furthermore, methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed a correlation between the expression of autophagy-related genes and N6-methyladenosine (m6A) modification following MA treatment. In addition, we identified METTL14 as a potential regulator of m6A methylation in HT22 cells after exposure to MA. Conclusion: Our study has contributed to a thorough mechanistic elucidation of the neurotoxic effects caused by MA, and has provided valuable insights for optimizing the rational utilization of traditional Chinese medicine formulations containing aconitum in clinical practice.

2.
Chem Biol Interact ; 395: 111036, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38705443

ABSTRACT

Gelsemium elegans Benth. (G. elegans) is a traditional medicinal herb that has anti-inflammatory, analgesic, sedative, and detumescence effects. However, it can also cause intestinal side effects such as abdominal pain and diarrhea. The toxicological mechanisms of gelsenicine are still unclear. The objective of this study was to assess enterotoxicity induced by gelsenicine in the nematodes Caenorhabditis elegans (C. elegans). The nematodes were treated with gelsenicine, and subsequently their growth, development, and locomotion behavior were evaluated. The targets of gelsenicine were predicted using PharmMapper. mRNA-seq was performed to verify the predicted targets. Intestinal permeability, ROS generation, and lipofuscin accumulation were measured. Additionally, the fluorescence intensities of GFP-labeled proteins involved in oxidative stress and unfolded protein response in endoplasmic reticulum (UPRER) were quantified. As a result, the treatment of gelsenicine resulted in the inhibition of nematode lifespan, as well as reductions in body length, width, and locomotion behavior. A total of 221 targets were predicted by PharmMapper, and 731 differentially expressed genes were screened out by mRNA-seq. GO and KEGG enrichment analysis revealed involvement in redox process and transmembrane transport. The permeability assay showed leakage of blue dye from the intestinal lumen into the body cavity. Abnormal mRNAs expression of gem-4, hmp-1, fil-2, and pho-1, which regulated intestinal development, absorption and catabolism, transmembrane transport, and apical junctions, was observed. Intestinal lipofuscin and ROS were increased, while sod-2 and isp-1 expressions were decreased. Multiple proteins in SKN-1/DAF-16 pathway were found to bind stably with gelsenicine in a predictive model. There was an up-regulation in the expression of SKN-1:GFP, while the nuclear translocation of DAF-16:GFP exhibited abnormality. The UPRER biomarker HSP-4:GFP was down-regulated. In conclusion, the treatment of gelsenicine resulted in the increase of nematode intestinal permeability. The toxicological mechanisms underlying this effect involved the disruption of intestinal barrier integrity, an imbalance between oxidative and antioxidant processes mediated by the SKN-1/DAF-16 pathway, and abnormal unfolded protein reaction.


Subject(s)
Caenorhabditis elegans , Reactive Oxygen Species , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Reactive Oxygen Species/metabolism , Quinoxalines/pharmacology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Oxidative Stress/drug effects , Intestines/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Gelsemium/chemistry , Unfolded Protein Response/drug effects , Permeability/drug effects , Lipofuscin/metabolism , Locomotion/drug effects , Indole Alkaloids
3.
Toxics ; 12(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38787118

ABSTRACT

Oridonin is the primary active component in the traditional Chinese medicine Rabdosia rubescens, displaying anti-inflammatory, anti-tumor, and antibacterial effects. It is widely employed in clinical therapy for acute and chronic pharyngitis, tonsillitis, as well as bronchitis. Nevertheless, the clinical application of oridonin is significantly restricted due to its reproductive toxicity, with the exact mechanism remaining unclear. The aim of this study was to investigate the mechanism of oridonin-induced damage to HTR-8/SVneo cells. Through the integration of epigenetics, proteomics, and metabolomics methodologies, the mechanisms of oridonin-induced reproductive toxicity were discovered and confirmed through fluorescence imaging, RT-qPCR, and Western blotting. Experimental findings indicated that oridonin altered m6A levels, gene and protein expression levels, along with metabolite levels within the cells. Additionally, oridonin triggered oxidative stress and mitochondrial damage, leading to a notable decrease in WNT6, ß-catenin, CLDN1, CCND1, and ZO-1 protein levels. This implied that the inhibition of the Wnt/ß-catenin signaling pathway and disruption of tight junction might be attributed to the cytotoxicity induced by oridonin and mitochondrial dysfunction, ultimately resulting in damage to HTR-8/SVneo cells.

4.
Nanomaterials (Basel) ; 14(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38668150

ABSTRACT

Lithium-sulfur batteries (LSBs) are recognized as among the best potential alternative battery systems to lithium-ion batteries and have been widely investigated. However, the shuttle effect has severely restricted the advancement in their practical applications. Here, we prepare vanadium nitride (VN) nanoparticles grown in situ on a nitrogen-doped carbon skeleton (denoted as VN@NC) derived from the MAX phase and use it as separator modification materials for LSBs to suppress the shuttle effect and optimize electrochemical performance. Thanks to the outstanding catalytic performance of VN and the superior electrical conductivity of carbon skeleton derived from MAX, the synergistic effect between the two accelerates the kinetics of both lithium polysulfides (LiPSs) to Li2S and the reverse reaction, effectively suppresses the shuttle effect, and increases cathode sulfur availability, significantly enhancing the electrochemical performance of LSBs. LSBs constructed with VN@NC-modified separators achieve outstanding rate performance and cycle stability. With a capacity of 560 mAh g-1 at 4 C, it exhibits enhanced structural and chemical stability. At 1 C, the device has an incipient capacity of 1052.4 mAh g-1, and the degradation rate averaged only 0.085% over 400cycles. Meanwhile, the LSBs also show larger capacities and good cycling stability at a low electrolyte/sulfur ratio and high surface-loaded sulfur conditions. Thus, a facile and efficient way of preparing modified materials for separators is provided to realize high-performance LSBs.

5.
Immunopharmacol Immunotoxicol ; 46(3): 395-407, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38627024

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the efficacy and safety of lenvatinib in various types of solid tumors. METHOD: By searching PubMed, Web of Science, Cochrane, CNKI, Wanfang and other databases, all the literatures about the comparison of clinical efficacy of lenvatinib in the treatment of various solid tumors. According to the criteria of inclusion and exclusion of literature, two participants screened the literature, collated the data and evaluated the literature. RevMan 5.4 software was used for meta-analysis of the included literatures. RESULTS: A total of 12 studies were included, including 5213 patients. Meta-analysis showed that, in terms of efficacy, the risk (HR) of prolonging PFS in the treatment of various solid tumors in the lenvatinib group was 1.91 times that in the control group (HR = 1.91, 95% CI: 1.58-2.31, p < 0.00001), and the risk (HR) of prolonging OS was 1.27 times that in the single targeted drug group (HR = 1.27, 95% CI: 1.15-1.40, p < 0.00001). In terms of safety, the risk of adverse events in the treatment of various solid tumors in the lenvatinib group was higher than that in the control group, especially in Endocrine Toxicities, Renal/Urinary Toxicities, Vascular Toxicities, Musculoskeletal/a Connective Tissue Toxicities and Metabolism/Nutrition Toxicities. CONCLUSIONS: Lenvatinib in various solid tumors can prolong OS and disease PFS of patients, improve the clinical benefit rate and improve the quality of life of patients. At the same time, there is a certain incidence of adverse events, and symptomatic intervention should be given in clinical medication.


Subject(s)
Antineoplastic Agents , Neoplasms , Phenylurea Compounds , Quinolines , Humans , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Phenylurea Compounds/adverse effects , Phenylurea Compounds/therapeutic use , Phenylurea Compounds/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Quinolines/adverse effects , Quinolines/therapeutic use , Quinolines/administration & dosage , Treatment Outcome
6.
Genes (Basel) ; 15(3)2024 03 09.
Article in English | MEDLINE | ID: mdl-38540406

ABSTRACT

Lipid metabolism participates in various physiological processes and has been shown to be connected to the development and progression of multiple diseases, especially metabolic hepatopathy. Apolipoproteins (Apos) act as vectors that combine with lipids, such as cholesterol and triglycerides (TGs). Despite being involved in lipid transportation and metabolism, the critical role of Apos in the maintenance of lipid metabolism has still not been fully revealed. This study sought to clarify variations related to m6A methylome in ApoF gene knockout mice with disordered lipid metabolism based on the bioinformatics method of transcriptome-wide m6A methylome epitranscriptomics. High-throughput methylated RNA immunoprecipitation sequencing (MeRIP-seq) was conducted in both wild-type (WT) and ApoF knockout (KO) mice. As a result, the liver histopathology presented vacuolization and steatosis, and the serum biochemical assays reported abnormal lipid content in KO mice. The m6A-modified mRNAs were conformed consensus sequenced in eukaryotes, and the distribution was enriched within the coding sequences and 3' non-coding regions. In KO mice, the functional annotation terms of the differentially expressed genes (DEGs) included cholesterol, steroid and lipid metabolism, and lipid storage. In the differentially m6A-methylated mRNAs, the functional annotation terms included cholesterol, TG, and long-chain fatty acid metabolic processes; lipid transport; and liver development. The overlapping DEGs and differential m6A-modified mRNAs were also enriched in terms of lipid metabolism disorder. In conclusion, transcriptome-wide MeRIP sequencing in ApoF KO mice demonstrated the role of this crucial apolipoprotein in liver health and lipid metabolism.


Subject(s)
Adenine , Lipid Metabolism , Transcriptome , Animals , Mice , Adenine/analogs & derivatives , Cholesterol/genetics , Cholesterol/metabolism , Epigenome , Lipid Metabolism/genetics , Liver/metabolism , RNA, Messenger/metabolism , Transcriptome/genetics , Triglycerides/genetics , Triglycerides/metabolism
7.
Phys Med Biol ; 69(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347732

ABSTRACT

Objective. Chest x-ray image representation and learning is an important problem in computer-aided diagnostic area. Existing methods usually adopt CNN or Transformers for feature representation learning and focus on learning effective representations for chest x-ray images. Although good performance can be obtained, however, these works are still limited mainly due to the ignorance of mining the correlations of channels and pay little attention on the local context-aware feature representation of chest x-ray image.Approach. To address these problems, in this paper, we propose a novel spatial-channel high-order attention model (SCHA) for chest x-ray image representation and diagnosis. The proposed network architecture mainly contains three modules, i.e. CEBN, SHAM and CHAM. To be specific, firstly, we introduce a context-enhanced backbone network by employing multi-head self-attention to extract initial features for the input chest x-ray images. Then, we develop a novel SCHA which contains both spatial and channel high-order attention learning branches. For the spatial branch, we develop a novel local biased self-attention mechanism which can capture both local and long-range global dependences of positions to learn rich context-aware representation. For the channel branch, we employ Brownian Distance Covariance to encode the correlation information of channels and regard it as the image representation. Finally, the two learning branches are integrated together for the final multi-label diagnosis classification and prediction.Main results. Experiments on the commonly used datasets including ChestX-ray14 and CheXpert demonstrate that our proposed SCHA approach can obtain better performance when comparing many related approaches.Significance. This study obtains a more discriminative method for chest x-ray classification and provides a technique for computer-aided diagnosis.


Subject(s)
Diagnosis, Computer-Assisted , Thorax , X-Rays , Radiography
8.
ACS Omega ; 9(6): 7132-7142, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371767

ABSTRACT

The recovery of low-grade waste heat from power plants greatly benefits energy conservation and emission reduction during electricity generation, while the waste heat utilization directly from desulfurization slurry is a significantly promising method to deeply recover such low-grade energy and has been developed in practical application. However, the pipe materials are subjected to erosion and corrosion challenges due to the high level of solid compositions and the presence of harmful ions, such as Cl-1, which requires further evaluation under the condition of slurry heat exchange. The present study aimed at an experimental study on the erosion-corrosion characteristics of desulfurization slurry on three types of stainless steel, including type 304, 316L, and 2205. Both mass loss and micromorphology features were analyzed with possible mechanisms elucidated. The erosion-corrosion rate is weak at low temperatures, while the increase in the slurry temperature clearly promotes its rate. The influence of the temperature on the corrosion resistance of 304 is much greater than that of 2205. With an increase in duration time, the weight loss rate of stainless steel in the desulfurization slurry declines, and the changing trend of metal mass slightly slows down. The present study offers a better understanding of the erosion-corrosion behaviors of three types of stainless steel under flow and heat transfer conditions of a desulfurization slurry.

9.
Cancer Chemother Pharmacol ; 93(1): 31-39, 2024 01.
Article in English | MEDLINE | ID: mdl-37740797

ABSTRACT

BACKGROUND: Camrelizumab combined with chemotherapy is approved across tumor types. However, only a fraction of patients benefits from immunotherapy, and biomarkers such as the expression of PD-L1, tumor mutational burden, and CXCL11 are expensive and suboptimal specificity for cancer patients. An exposure-response (E-R) relationship has been reported in many immune checkpoint inhibitors (ICIs), and the trough concentrations and other drug exposure metrics are broadly used to guide dosing decisions, assess exposure-outcomes relationships, and ultimately predict outcomes based on those relationships. However, the potential use of trough concentration levels for camrelizumab is still not clear. METHODS: Blood samples were obtained at trough levels after doses 3 and 4 from 77 patients with advanced lung cancer who received camrelizumab (200 mg Q3 W) monotherapy or combined with chemotherapy. We optimized a competitive ELISA method to measure the trough concentration. RESULTS: We found that the trough concentration was steady after 3 dose cycles, and the trough concentration level of camrelizumab was higher in patients who developed immune-related adverse effects (irAEs) than in those who did not (P < 0.05) but was not observed in disease progression and PFS (P > 0.05). Age (< 65 years old), no smoking history, and efficacy evaluation after 4-dose treatment were associated with PFS (P < 0.05), but no significance was observed in other clinical characteristics. Total bilirubin and albumin had an influence on trough concentration, and monocytes and albumin were independent risk factors for PFS (P < 0.05). CONCLUSIONS: Our results suggest that the trough concentration level of camrelizumab might be a risk factor for the occurrence of irAEs in advanced lung cancer, and using the immunotherapy as early as possible may bring better clinical outcomes.


Subject(s)
Antibodies, Monoclonal, Humanized , Drug-Related Side Effects and Adverse Reactions , Lung Neoplasms , Humans , Aged , Lung Neoplasms/drug therapy , East Asian People , Albumins
10.
Ann Diagn Pathol ; 69: 152262, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38150866

ABSTRACT

OBJECTIVE: To investigate the expression of ephrin type B receptor 3 (EphB3) in thyroid tumors and its usage as an ancillary diagnostic biomarker for thyroid tumors. METHODS: Formalin-fixed and paraffin-embedded (FFPE) tissue samples (78 cases) and FNAC samples (57 cases) were assessed with the EphB3 antibody using immunohistochemistry. PTC and other thyroid follicular tumors were compared regarding their EphB3 expression. Sanger sequencing was used to assess for the presence of a BRAF V600E mutation. RESULTS: EphB3 was positive in 81.8 % (27/33) of papillary thyroid carcinoma (PTC), 83.3 % (5/6) of medullary thyroid carcinoma (MTC), 25 % (1/4) of hyperplastic/adenomatoid nodule (HN), 14.3 % (1/7) of follicular adenoma (FA), and negative in follicular tumors of uncertain malignant potential (FT-UMP) (0/13), noninvasive follicular neoplasm with papillary-like nuclear features (NIFTP) (0/7), thyroid follicular carcinoma (TFC) (0/4), Hashimoto's thyroiditis (0/4), and normal thyroid follicular tissues (0/33). In cellular blocks, EphB3 was positive in 87.1 % (20/23) of PTC, 75 % (3/4) of MTC, 20 % (2/10) of HN, and negative in atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS) (0/20) and normal thyroid follicular cells (0/10). CONCLUSION: EphB3 is expressed in the majority of PTC, but less so in benign follicular nodules. EphB3 expression in fine needle aspiration cytology (FNAC) specimens can be used as a diagnostic tool to differentiate thyroid cancer from other follicular lesions in its differential diagnosis, especially AUS/FLUS and PTC.


Subject(s)
Adenocarcinoma, Follicular , Adenoma , Carcinoma, Neuroendocrine , Carcinoma, Papillary , Thyroid Neoplasms , Thyroid Nodule , Humans , Adenocarcinoma, Follicular/pathology , Biomarkers , Carcinoma, Papillary/diagnosis , Carcinoma, Papillary/pathology , Hyperplasia , Retrospective Studies , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology , Thyroid Nodule/pathology , Receptor, EphB3
11.
Nature ; 622(7984): 834-841, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794190

ABSTRACT

Although haemoglobin is a known carrier of oxygen in erythrocytes that functions to transport oxygen over a long range, its physiological roles outside erythrocytes are largely elusive1,2. Here we found that chondrocytes produced massive amounts of haemoglobin to form eosin-positive bodies in their cytoplasm. The haemoglobin body (Hedy) is a membraneless condensate characterized by phase separation. Production of haemoglobin in chondrocytes is controlled by hypoxia and is dependent on KLF1 rather than the HIF1/2α pathway. Deletion of haemoglobin in chondrocytes leads to Hedy loss along with severe hypoxia, enhanced glycolysis and extensive cell death in the centre of cartilaginous tissue, which is attributed to the loss of the Hedy-controlled oxygen supply under hypoxic conditions. These results demonstrate an extra-erythrocyte role of haemoglobin in chondrocytes, and uncover a heretofore unrecognized mechanism in which chondrocytes survive a hypoxic environment through Hedy.


Subject(s)
Adaptation, Physiological , Cell Hypoxia , Chondrocytes , Hemoglobins , Humans , Cartilage, Articular/cytology , Cartilage, Articular/metabolism , Cell Death , Cell Hypoxia/physiology , Chondrocytes/metabolism , Cytoplasm/metabolism , Eosine Yellowish-(YS)/metabolism , Erythrocytes/metabolism , Glycolysis , Hemoglobins/deficiency , Hemoglobins/genetics , Hemoglobins/metabolism , Oxygen/metabolism
12.
J Agric Food Chem ; 71(37): 13768-13782, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37672659

ABSTRACT

Although great progress has been made recently in targeted and immune-based therapies, additional treatments are needed for most melanoma patients due to acquired chemoresistance, recurrence, or metastasis. Elevated autophagy is required for the pathogenesis of melanoma to attenuate metabolic stress, protecting cancer cells from chemotherapeutics or radiation. Thus, intervention with autophagy is a promising strategy for melanoma treatment. Here, we examined a novel antimelanoma natural compound named kuwanon H (KuH), which significantly inhibited melanoma cell growth in vitro/vivo. Mechanistically, KuH induced cytotoxic endoplasmic reticulum (ER) stress, which inhibited cell viability and induced apoptosis. Meanwhile, KuH-induced ER stress mediated autophagysome formation through the ATF4-DDIT3-TRIB3-AKT-MTOR axis. Importantly, KuH impaired autophagy flux, which contributed to the anticancer effects of KuH. Finally, our results showed that KuH enhanced the sensitivity of melanoma cells to cisplatin, both in vitro and in vivo, by impairing autophagy degradation of reactive oxygen species and damaged mitochondria. Our findings indicate that KuH is a promising candidate anticancer natural product for melanoma therapy.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Melanoma/drug therapy , Melanoma/genetics , Antineoplastic Agents/pharmacology , Autophagy , Endoplasmic Reticulum Stress
13.
Front Cell Dev Biol ; 11: 1172385, 2023.
Article in English | MEDLINE | ID: mdl-37519296

ABSTRACT

The emergence and development of induced pluripotent stem cells (iPSCs) provides an approach to understand the regulatory mechanisms of cell pluripotency and demonstrates the great potential of iPSCs in disease modeling. Acute myelitis defines a group of inflammatory diseases that cause acute nerve damage in the spinal cord; however, its pathophysiology remains to be elusive. In this study, we derived skin fibroblasts from a patient with acute myelitis (P-HAF) and then reprogrammed P-HAF cells to iPSCs using eight exogenous factors (namely, OCT4, SOX2, c-MYC, KLF4, NANOG, LIN28, RARG, and LRH1). We performed transcriptomic analysis of the P-HAF and compared the biological characteristics of the iPSCs derived from the patient (P-iPSCs) with those derived from normal individuals in terms of pluripotency, transcriptomic characteristics, and differentiation ability toward the ectoderm. Compared to the control iPSCs, the P-iPSCs displayed similar features of pluripotency and comparable capability of ectoderm differentiation in the specified culture. However, when tested in the common medium, the P-iPSCs showed attenuated potential for ectoderm differentiation. The transcriptomic analysis revealed that pathways enriched in P-iPSCs included those involved in Wnt signaling. To this end, we treated iPSCs and P-iPSCs with the Wnt signaling pathway inhibitor IWR1 during the differentiation process and found that the expression of the ectoderm marker Sox1 was increased significantly in P-iPSCs. This study provides a novel approach to investigating the pathogenesis of acute myelitis.

14.
Fish Shellfish Immunol ; 139: 108852, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295735

ABSTRACT

Cathepsins belong to a group of proteins that are present in both prokaryotic and eukaryotic organisms and have an extremely high degree of evolutionary conservation. These proteins are functionally active in extracellular environments as soluble enzymatic proteins or attached to plasma membrane receptors. In addition, they occur in cellular secretory vesicles, mitochondria, the cytosol, and within the nuclei of eukaryotic cells. Cathepsins are classified into various groups based on their sequence variations, leading to their structural and functional diversification. The molecular understanding of the physiology of crustaceans has shown that proteases, including cathepsins, are expressed ubiquitously. They also contain one of the central regulatory systems for crustacean reproduction, growth, and immune responses. This review focuses on various aspects of the crustaceans cathepsins and emphasizes their biological roles in different physiological processes such as reproduction, growth, development, and immune responses. We also describe the bioactivity of crustaceans cathepsins. Because of the vital biological roles that cathepsins play as cellular proteases in physiological processes, they have been proposed as potential novel targets for the development of management strategies for the aquaculture industries.


Subject(s)
Cathepsins , Physiological Phenomena , Animals , Cathepsins/genetics , Cathepsins/chemistry , Proteins , Biological Evolution
15.
Mol Breed ; 43(5): 37, 2023 May.
Article in English | MEDLINE | ID: mdl-37312749

ABSTRACT

The genetic base of soybean cultivars (Glycine max (L.) Merr.) has been narrowed through selective domestication and specific breeding improvement, similar to other crops. This presents challenges in breeding new cultivars with improved yield and quality, reduced adaptability to climate change, and increased susceptibility to diseases. On the other hand, the vast collection of soybean germplasms offers a potential source of genetic variations to address those challenges, but it has yet to be fully leveraged. In recent decades, rapidly improved high-throughput genotyping technologies have accelerated the harness of elite variations in soybean germplasm and provided the important information for solving the problem of a narrowed genetic base in breeding. In this review, we will overview the situation of maintenance and utilization of soybean germplasms, various solutions provided for different needs in terms of the number of molecular markers, and the omics-based high-throughput strategies that have been used or can be used to identify elite alleles. We will also provide an overall genetic information generated from soybean germplasms in yield, quality traits, and pest resistance for molecular breeding.

16.
Biomark Res ; 11(1): 48, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147729

ABSTRACT

The serine-glycine-one-carbon (SGOC) metabolic pathway is critical for DNA methylation, histone methylation, and redox homeostasis, in addition to protein, lipid, and nucleotide biosynthesis. The SGOC pathway is a crucial metabolic network in tumorigenesis, wherein the outputs are required for cell survival and proliferation and are particularly likely to be co-opted by aggressive cancers. SGOC metabolism provides an integration point in cell metabolism and is of crucial clinical significance. The mechanism of how this network is regulated is the key to understanding tumor heterogeneity and overcoming the potential mechanism of tumor recurrence. Herein, we review the role of SGOC metabolism in cancer by focusing on key enzymes with tumor-promoting functions and important products with physiological significance in tumorigenesis. In addition, we introduce the ways in which cancer cells acquire and use one-carbon unit, and discuss the recently clarified role of SGOC metabolic enzymes in tumorigenesis and development, as well as their relationship with cancer immunotherapy and ferroptosis. The targeting of SGOC metabolism may be a potential therapeutic strategy to improve clinical outcomes in cancers.

17.
Am J Cancer Res ; 13(3): 1091-1102, 2023.
Article in English | MEDLINE | ID: mdl-37034205

ABSTRACT

Lung cancer is ranked as the leading cause of cancer-related death worldwide, and the development of novel biomarkers is helpful to improve the prognosis of non-small cell lung cancer (NSCLC). Cell-in-cell structures (CICs), a novel functional surrogate of complicated cell behaviors, have shown promise in predicting the prognosis of cancer patients. However, the CIC profiling and its prognostic value remain unclear in NSCLC. In this study, we retrospectively explored the CIC profiling in a cohort of NSCLC tissues by using the "Epithelium-Macrophage-Leukocyte" (EML) method. The distribution of CICs was examined by the Chi-square test, and univariate and multivariate analyses were performed for survival analysis. Four types of CICs were identified in lung cancer tissues, namely, tumor-in-tumor (TiT), tumor-in-macrophage (TiM), lymphocyte-in-tumor (LiT), and macrophage-in-tumor (MiT). Among them, the latter three constituted the heterotypic CICs (heCICs). Overall, CICs were more frequently present in adenocarcinoma than in squamous cell carcinoma (P = 0.009), and LiT was more common in the upper lobe of the lung compared with other lobes (P = 0.020). In univariate analysis, the presence of TiM, heCIC density, TNM stage, T stage, and N stage showed association with the overall survival (OS) of NSCLC patients. Multivariate analysis revealed that heCICs (HR = 2.6, 95% CI 1.25-5.6) and lymph node invasion (HR = 2.6, 95% CI 1.33-5.1) were independent factors associated with the OS of NSCLC. Taken together, we profiled the CIC subtypes in NSCLC for the first time and demonstrated the prognostic value of heCICs, which may serve as a type of novel functional markers along with classical pathological factors in improving prognosis prediction for patients with NSCLC.

18.
Front Pharmacol ; 14: 947982, 2023.
Article in English | MEDLINE | ID: mdl-37025488

ABSTRACT

Objective: This study aimed to clarify the effect of parecoxib sodium on the occurrence of postoperative delirium and to investigate its possible mechanism. Methods: A total of 80 patients who underwent elective hip arthroplasty in our hospital between December 2020 and December 2021 were selected and randomly divided into two groups: a parecoxib sodium group (group P, n = 40) and a control group (group C, n = 40). Patients in group P were intravenously injected with 40 mg of parecoxib sodium 30 min before anesthesia and at the end of the surgery. Patients in group C were intravenously injected with the same volume of normal saline at the same time points. The primary endpoint was the incidence of POD, and the secondary endpoints were the levels of inflammatory factors (tumor necrosis factor- α [TNF-α], interleukin [IL]-1ß, IL-6, and IL-10), nerve injury-related factors (brain-derived neurotrophic factor [BDNF], S-100ß protein, neuron-specific enolase [NSE], and neurofilament light chain [NfL]), and antioxidant factors (heme oxygenase-1 [HO-1]), as well as the Visual Analogue Scale (VAS) and Confusion Assessment Method-Chinese Reversion (CAM-CR) scores. Results: The incidence of POD was 10% in group P and 27.5% in group C. Intergroup comparison revealed that the levels of TNF-α, IL-1ß, S-100ß, NfL, and NSE were lower, and BDNF was higher, in group P than in group C at each postoperative time point. The levels of IL-6 were lower, and the levels of IL-10 and HO-1 were higher, in group P than in group C at 1 h and 1 day postoperatively (p < 0.05). Three days after surgery, the differences in the levels of IL-6, IL-10, and HO-1 were not statistically significant between the two groups (p > 0.05). The VAS and CAM-CR scores were lower at each postoperative time point in group P than in group C (p < 0.05). Conclusion: Parecoxib sodium could reduce postoperative pain, decrease the plasma levels of inflammatory and nerve injury-related factors, upregulate HO-1 levels, and reduce the incidence of POD. The results of this study suggest that parecoxib sodium may reduce the occurrence of POD through the effects of anti-inflammation, analgesia, and antioxidants.

19.
RSC Adv ; 13(13): 8502-8522, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36926300

ABSTRACT

Conductive hydrogels are platforms recognized as constituting promising materials for tissue engineering applications. This is because such conductive hydrogels are characterized by the inherent conductivity properties while retaining favorable biocompatibility and mechanical properties. These conductive hydrogels can be particularly useful in enhancing wound healing since their favorable conductivity can promote the transport of essential ions for wound healing via the imposition of a so-called transepithelial potential. Other valuable properties of these conductive hydrogels, such as wound monitoring, stimuli-response etc., are also discussed in this study. Crucially, the properties of conductive hydrogels, such as 3D printability and monitoring properties, suggest the possibility of its use as an alternative wound dressing to traditional dressings such as bandages. This review, therefore, seeks to comprehensively explore the functionality of conductive hydrogels in wound healing, types of conductive hydrogels and their preparation strategies and crucial properties of hydrogels. This review will also assess the limitations of conductive hydrogels and future perspectives, with an emphasis on the development trend for conductive hydrogel uses in wound dressing fabrication for subsequent clinical applications.

20.
Front Plant Sci ; 14: 1040758, 2023.
Article in English | MEDLINE | ID: mdl-36743505

ABSTRACT

Both biotic and abiotic factors restrict changes in autumn phenology, yet their effects remain ambiguous, which hinders the accurate prediction of phenology under future climate change. In this study, based on the phenological records of 135 tree species at ten sites in China during 1979-2018, we first investigated the effects of climatic factors (temperature, precipitation, insolation and wind speed) and spring phenology on interannual changes in leaf coloring date (LCD) with the partial correlation analysis, and assessed the relative importance of phylogeny and native climate to LCD differences among species by using multivariate regression and phylogenetic eigenvector regression approach. The results showed that the effects of climate factors on interannual changes in LCD were more significant than spring phenology. In general, temperature played a more important role in cold regions (e.g. the northeast region), while the control of insolation on LCD was stronger in the warmer and wetter regions (e.g. the north, east and southwest regions). In addition, the effects of precipitation and wind speed were more evident in arid regions (e.g. the northwest region). We also found considerable effects of both native climate and phylogeny on the LCD differences among species, despite the contribution of native climate being almost 2~5 times greater than that of the phylogeny. Our findings confirmed and quantified the combined effects of climate, spring phenology and phylogeny on the autumn phenology of plants, which could help better understand the driving factors and influencing mechanism of plant phenology and provide a reference for the calibration and optimization of phenological models.

SELECTION OF CITATIONS
SEARCH DETAIL
...