Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Br J Haematol ; 204(5): 1838-1843, 2024 May.
Article in English | MEDLINE | ID: mdl-38471524

ABSTRACT

Real-world data have revealed that a substantial portion of patients with myelodysplastic syndromes (MDS) does not respond to epigenetic therapy with hypomethylating agents (HMAs). The cellular and molecular reasons for this resistance to the demethylating agent and biomarkers that would be able to predict the treatment refractoriness are largely unknown. In this study, we shed light on this enigma by characterizing the epigenomic profiles of patients with MDS treated with azacitidine. Our approach provides a comprehensive view of the evolving DNA methylation architecture of the disease and holds great potential for advancing our understanding of MDS treatment responses to HMAs.


Subject(s)
Azacitidine , DNA Methylation , Myelodysplastic Syndromes , Humans , Azacitidine/therapeutic use , Azacitidine/pharmacology , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Retrospective Studies , Male , Female , Aged , Middle Aged , Antimetabolites, Antineoplastic/therapeutic use , Antimetabolites, Antineoplastic/pharmacology , Aged, 80 and over , Epigenesis, Genetic/drug effects , Treatment Outcome
3.
Mol Oncol ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129291

ABSTRACT

The clinical relevance of the colorectal cancer serrated pathway is evident, but the screening of serrated lesions remains challenging. We aimed to characterize the serum methylome of the serrated pathway and to evaluate circulating cell-free DNA (cfDNA) methylomes as a potential source of biomarkers for the non-invasive detection of serrated lesions. We collected serum samples from individuals with serrated adenocarcinoma (SAC), traditional serrated adenomas, sessile serrated lesions, hyperplastic polyps and individuals with no colorectal findings. First, we quantified cfDNA methylation with the MethylationEPIC array. Then, we compared the methylation profiles with tissue and serum datasets. Finally, we evaluated the utility of serum cfDNA methylation biomarkers. We identified a differential methylation profile able to distinguish high-risk serrated lesions from no serrated neoplasia, showing concordance with tissue methylation from SAC and sessile serrated lesions. Serum methylation profiles are pathway-specific, clearly separating serrated lesions from conventional adenomas. The combination of ninjurin 2 (NINJ2) and glutamate-rich 1 (ERICH1) methylation discriminated high-risk serrated lesions and SAC with 91.4% sensitivity (64.4% specificity), while zinc finger protein 718 (ZNF718) methylation reported 100% sensitivity for the detection of SAC (96% specificity). This is the first study exploring the serum methylome of serrated lesions. Differential methylation of cfDNA can be used for the non-invasive detection of colorectal serrated lesions.

4.
Science ; 382(6670): eabp9201, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37917677

ABSTRACT

One-carbon metabolism is an essential branch of cellular metabolism that intersects with epigenetic regulation. In this work, we show how formaldehyde (FA), a one-carbon unit derived from both endogenous sources and environmental exposure, regulates one-carbon metabolism by inhibiting the biosynthesis of S-adenosylmethionine (SAM), the major methyl donor in cells. FA reacts with privileged, hyperreactive cysteine sites in the proteome, including Cys120 in S-adenosylmethionine synthase isoform type-1 (MAT1A). FA exposure inhibited MAT1A activity and decreased SAM production with MAT-isoform specificity. A genetic mouse model of chronic FA overload showed a decrease n SAM and in methylation on selected histones and genes. Epigenetic and transcriptional regulation of Mat1a and related genes function as compensatory mechanisms for FA-dependent SAM depletion, revealing a biochemical feedback cycle between FA and SAM one-carbon units.


Subject(s)
Carbon , Cysteine , Epigenesis, Genetic , Formaldehyde , Methionine Adenosyltransferase , S-Adenosylmethionine , Animals , Mice , Carbon/metabolism , Epigenesis, Genetic/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , S-Adenosylmethionine/antagonists & inhibitors , S-Adenosylmethionine/metabolism , Formaldehyde/metabolism , Formaldehyde/toxicity , Environmental Exposure , Methionine Adenosyltransferase/antagonists & inhibitors , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Cysteine/metabolism , Humans , Hep G2 Cells
5.
J Natl Cancer Inst ; 115(10): 1234-1235, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37594781
6.
Leukemia ; 37(9): 1868-1878, 2023 09.
Article in English | MEDLINE | ID: mdl-37452103

ABSTRACT

Chimeric antigen receptor (CAR) T cells provide new perspectives for treatment of hematological malignancies. Manufacturing of these cellular products includes culture expansion procedures, which may affect cellular integrity and therapeutic outcome. In this study, we investigated culture-associated epigenetic changes in CAR T cells and found continuous gain of DNAm, particularly within genes that are relevant for T cell function. Hypermethylation in many genes, such as TCF7, RUNX1, and TOX, was reflected by transcriptional downregulation. 332 CG dinucleotides (CpGs) showed an almost linear gain in methylation with cell culture time, albeit neighboring CpGs were not coherently regulated on the same DNA strands. An epigenetic signature based on 14 of these culture-associated CpGs predicted cell culture time across various culture conditions. Notably, even in CAR T cell products of similar culture time higher DNAm levels at these CpGs were associated with significantly reduced long-term survival post transfusion. Our data demonstrate that cell culture expansion of CAR T cells evokes DNA hypermethylation at specific sites in the genome and the signature may also reflect loss of potential in CAR T cell products. Hence, reduced cultivation periods are beneficial to avoid dysfunctional methylation programs that seem to be associated with worse therapeutic outcome.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , T-Lymphocytes , Cell Culture Techniques , Immunotherapy, Adoptive
7.
Mol Cancer ; 22(1): 83, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173708

ABSTRACT

BACKGROUND: RNA modifications are important regulators of transcript activity and an increasingly emerging body of data suggests that the epitranscriptome and its associated enzymes are altered in human tumors. METHODS: Combining data mining and conventional experimental procedures, NSUN7 methylation and expression status was assessed in liver cancer cell lines and primary tumors. Loss-of-function and transfection-mediated recovery experiments coupled with RNA bisulfite sequencing and proteomics determined the activity of NSUN7 in downstream targets and drug sensitivity. RESULTS: In this study, the initial screening for genetic and epigenetic defects of 5-methylcytosine RNA methyltransferases in transformed cell lines, identified that the NOL1/NOP2/Sun domain family member 7 (NSUN7) undergoes promoter CpG island hypermethylation-associated with transcriptional silencing in a cancer-specific manner. NSUN7 epigenetic inactivation was common in liver malignant cells and we coupled bisulfite conversion of cellular RNA with next-generation sequencing (bsRNA-seq) to find the RNA targets of this poorly characterized putative RNA methyltransferase. Using knock-out and restoration-of-function models, we observed that the mRNA of the coiled-coil domain containing 9B (CCDC9B) gene required NSUN7-mediated methylation for transcript stability. Most importantly, proteomic analyses determined that CCDC9B loss impaired protein levels of its partner, the MYC-regulator Influenza Virus NS1A Binding Protein (IVNS1ABP), creating sensitivity to bromodomain inhibitors in liver cancer cells exhibiting NSUN7 epigenetic silencing. The DNA methylation-associated loss of NSUN7 was also observed in primary liver tumors where it was associated with poor overall survival. Interestingly, NSUN7 unmethylated status was enriched in the immune active subclass of liver tumors. CONCLUSION: The 5-methylcytosine RNA methyltransferase NSUN7 undergoes epigenetic inactivation in liver cancer that prevents correct mRNA methylation. Furthermore, NSUN7 DNA methylation-associated silencing is associated with clinical outcome and distinct therapeutic vulnerability.


Subject(s)
Liver Neoplasms , Methyltransferases , Humans , 5-Methylcytosine , CpG Islands , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Proteomics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/genetics
8.
Epigenetics ; 18(1): 2185742, 2023 12.
Article in English | MEDLINE | ID: mdl-36871255

ABSTRACT

DNA methylation, one of the best characterized epigenetic marks in the human genome, plays a pivotal role in gene transcription regulation and other biological processes in humans. On top of that, the DNA methylome undergoes profound changes in cancer and other disorders. However, large-scale and population-based studies are limited by high costs and the need for considerable expertise in data analysis for whole-genome bisulphite-sequencing methodologies. Following the success of the EPIC DNA methylation microarray, the newly developed Infinium HumanMethylationEPIC version 2.0 (900K EPIC v2) is now available. This new array contains more than 900,000 CpG probes covering the human genome and excluding masked probes from the previous version. The 900K EPIC v2 microarray adds more than 200,000 probes covering extra DNA cis-regulatory regions such as enhancers, super-enhancers and CTCF binding regions. Herein, we have technically and biologically validated the new methylation array to show its high reproducibility and consistency among technical replicates and with DNA extracted from FFPE tissue. In addition, we have hybridized primary normal and tumoural tissues and cancer cell lines from different sources and tested the robustness of the 900K EPIC v2 microarray when analysing the different DNA methylation profiles. The validation highlights the improvements offered by the new array and demonstrates the versatility of this updated tool for characterizing the DNA methylome in human health and disease.


Subject(s)
DNA Methylation , Epigenome , Humans , Reproducibility of Results , Microarray Analysis , Cell Line
9.
Cell Rep ; 40(8): 111257, 2022 08 23.
Article in English | MEDLINE | ID: mdl-36001980

ABSTRACT

The human face is one of the most visible features of our unique identity as individuals. Interestingly, monozygotic twins share almost identical facial traits and the same DNA sequence but could exhibit differences in other biometrical parameters. The expansion of the world wide web and the possibility to exchange pictures of humans across the planet has increased the number of people identified online as virtual twins or doubles that are not family related. Herein, we have characterized in detail a set of "look-alike" humans, defined by facial recognition algorithms, for their multiomics landscape. We report that these individuals share similar genotypes and differ in their DNA methylation and microbiome landscape. These results not only provide insights about the genetics that determine our face but also might have implications for the establishment of other human anthropometric properties and even personality characteristics.


Subject(s)
Facial Recognition , Algorithms , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Twins, Monozygotic/genetics
11.
EClinicalMedicine ; 50: 101515, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35770252

ABSTRACT

Background: Most children and adolescents infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain asymptomatic or develop a mild coronavirus disease 2019 (COVID-19) that usually does not require medical intervention. However, a small proportion of pediatric patients develop a severe clinical condition, multisystem inflammatory syndrome in children (MIS-C). The involvement of epigenetics in the control of the immune response and viral activity prompted us to carry out an epigenomic study to uncover target loci regulated by DNA methylation that could be altered upon the appearance of MIS-C. Methods: Peripheral blood samples were recruited from 43 confirmed MIS-C patients. 69 non-COVID-19 pediatric samples and 15 COVID-19 pediatric samples without MIS-C were used as controls. The cases in the two groups were mixed and divided into discovery (MIS-C = 29 and non-MIS-C = 56) and validation (MIS-C = 14 and non-MIS-C = 28) cohorts, and balanced for age, gender and ethnic background. We interrogated 850,000 CpG sites of the human genome for DNA methylation variants. Findings: The DNA methylation content of 33 CpG loci was linked with the presence of MIS-C. Of these sites, 18 (54.5%) were located in described genes. The top candidate gene was the immune T-cell mediator ZEB2; and others highly ranked candidates included the regulator of natural killer cell functional competence SH2D1B; VWA8, which contains a domain of the Von Willebrand factor A involved in the pediatric hemostasis disease; and human leukocyte antigen complex member HLA-DRB1; in addition to pro-inflammatory genes such as CUL2 and AIM2. The identified loci were used to construct a DNA methylation profile (EPIMISC) that was associated with MIS-C in both cohorts. The EPIMISC signature was also overrepresented in Kawasaki disease patients, a childhood pathology with a possible viral trigger, that shares many of the clinical features of MIS-C. Interpretation: We have characterized DNA methylation loci that are associated with MIS-C diagnosis. The identified genes are likely contributors to the characteristic exaggerated host inflammatory response observed in these patients. The described epigenetic signature could also provide new targets for more specific therapies for the disorder. Funding: Unstoppable campaign of Josep Carreras Leukaemia Foundation, Fundació La Marató de TV3, Cellex Foundation and CERCA Programme/Generalitat de Catalunya.

12.
Bioinformatics ; 38(12): 3181-3191, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35512388

ABSTRACT

MOTIVATION: The analysis of cancer genomes provides fundamental information about its etiology, the processes driving cell transformation or potential treatments. While researchers and clinicians are often only interested in the identification of oncogenic mutations, actionable variants or mutational signatures, the first crucial step in the analysis of any tumor genome is the identification of somatic variants in cancer cells (i.e. those that have been acquired during their evolution). For that purpose, a wide range of computational tools have been developed in recent years to detect somatic mutations in sequencing data from tumor samples. While there have been some efforts to benchmark somatic variant calling tools and strategies, the extent to which variant calling decisions impact the results of downstream analyses of tumor genomes remains unknown. RESULTS: Here, we quantify the impact of variant calling decisions by comparing the results obtained in three important analyses of cancer genomics data (identification of cancer driver genes, quantification of mutational signatures and detection of clinically actionable variants) when changing the somatic variant caller (MuSE, MuTect2, SomaticSniper and VarScan2) or the strategy to combine them (Consensus of two, Consensus of three and Union) across all 33 cancer types from The Cancer Genome Atlas. Our results show that variant calling decisions have a significant impact on these analyses, creating important differences that could even impact treatment decisions for some patients. Moreover, the Consensus of three calling strategy to combine the output of multiple variant calling tools, a very widely used strategy by the research community, can lead to the loss of some cancer driver genes and actionable mutations. Overall, our results highlight the limitations of widespread practices within the cancer genomics community and point to important differences in critical analyses of tumor sequencing data depending on variant calling, affecting even the identification of clinically actionable variants. AVAILABILITY AND IMPLEMENTATION: Code is available at https://github.com/carlosgarciaprieto/VariantCallingClinicalBenchmark. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing , Neoplasms , Humans , High-Throughput Nucleotide Sequencing/methods , Mutation , Genomics , Neoplasms/genetics , Oncogenes , Carcinogenesis/genetics , Software
13.
Epigenetics ; 17(12): 1677-1685, 2022 12.
Article in English | MEDLINE | ID: mdl-35297293

ABSTRACT

Mouse has been extensively used as a model organism in many studies to characterize biological pathways and drug effects and to mimic human diseases. Similar DNA sequences between both species facilitate these types of experiments. However, much less is known about the mouse epigenome, particularly for DNA methylation. Progress in delivering mouse DNA methylomes has been slow due to the currently available time-consuming and expensive methodologies. Following the great acceptance of the human DNA methylation microarrays, we have herein validated a newly developed DNA methylation microarray (Infinium Mouse Methylation BeadChip) that interrogates 280,754 unique CpG sites within the mouse genome. The CpGs included in the platform cover CpG Islands, shores, shelves and open sea sequences, and loci surrounding transcription start sites and gene bodies. From a functional standpoint, mouse ENCODE representative DNase hypersensitivity sites (rDHSs) and candidate cis-Regulatory Elements (cCREs) are also included. Herein, we show that the profiled mouse DNA methylation microarray provides reliable values among technical replicates; matched results from fresh frozen versus formalin-fixed samples; detects hemimethylated X-chromosome and imprinted CpG sites; and is able to determine CpG methylation changes in mouse cell lines treated with a DNA demethylating agent or upon genetic disruption of a DNA methyltransferase. Most important, using unsupervised hierarchical clustering and t-SNE approaches, the platform is able to classify all types of normal mouse tissues and organs. These data underscore the great features of the assessed microarray to obtain comprehensive DNA methylation profiles of the mouse genome.


Subject(s)
CpG Islands , DNA Methylation , Formaldehyde , Animals , Mice , Deoxyribonucleases/genetics , DNA , Methyltransferases/genetics , Transcription Initiation Site
14.
J Natl Cancer Inst ; 114(3): 436-445, 2022 03 08.
Article in English | MEDLINE | ID: mdl-34581788

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cells directed against CD19 (CART19) are effective in B-cell malignancies, but little is known about the molecular factors predicting clinical outcome of CART19 therapy. The increasingly recognized relevance of epigenetic changes in cancer immunology prompted us to determine the impact of the DNA methylation profiles of CART19 cells on the clinical course. METHODS: We recruited 114 patients with B-cell malignancies, comprising 77 patients with acute lymphoblastic leukemia and 37 patients with non-Hodgkin lymphoma who were treated with CART19 cells. Using a comprehensive DNA methylation microarray, we determined the epigenomic changes that occur in the patient T cells upon transduction of the CAR vector. The effects of the identified DNA methylation sites on clinical response, cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, event-free survival, and overall survival were assessed. All statistical tests were 2-sided. RESULTS: We identified 984 genomic sites with differential DNA methylation between CAR-untransduced and CAR-transduced T cells before infusion into the patient. Eighteen of these distinct epigenetic loci were associated with complete response (CR), adjusting by multiple testing. Using the sites linked to CR, an epigenetic signature, referred to hereafter as the EPICART signature, was established in the initial discovery cohort (n = 79), which was associated with CR (Fisher exact test, P < .001) and enhanced event-free survival (hazard ratio [HR] = 0.36; 95% confidence interval [CI] = 0.19 to 0.70; P = .002; log-rank P = .003) and overall survival (HR = 0.45; 95% CI = 0.20 to 0.99; P = .047; log-rank P = .04;). Most important, the EPICART profile maintained its clinical course predictive value in the validation cohort (n = 35), where it was associated with CR (Fisher exact test, P < .001) and enhanced overall survival (HR = 0.31; 95% CI = 0.11 to 0.84; P = .02; log-rank P = .02). CONCLUSIONS: We show that the DNA methylation landscape of patient CART19 cells influences the efficacy of the cellular immunotherapy treatment in patients with B-cell malignancy.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Antigens, CD19 , Cell- and Tissue-Based Therapy , Epigenesis, Genetic , Humans , Immunotherapy, Adoptive/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/genetics
15.
Blood Cancer Discov ; 2(1): 92-109, 2021 01.
Article in English | MEDLINE | ID: mdl-33458694

ABSTRACT

Long-range oncogenic enhancers play an important role in cancer. Yet, whether similar regulation of tumor suppressor genes is relevant remains unclear. Loss of expression of PTEN is associated with the pathogenesis of various cancers, including T-cell leukemia (T-ALL). Here, we identify a highly conserved distal enhancer (PE) that interacts with the PTEN promoter in multiple hematopoietic populations, including T-cells, and acts as a hub of relevant transcription factors in T-ALL. Consistently, loss of PE leads to reduced PTEN levels in T-ALL cells. Moreover, PE-null mice show reduced Pten levels in thymocytes and accelerated development of NOTCH1-induced T-ALL. Furthermore, secondary loss of PE in established leukemias leads to accelerated progression and a gene expression signature driven by Pten loss. Finally, we uncovered recurrent deletions encompassing PE in T-ALL, which are associated with decreased PTEN levels. Altogether, our results identify PE as the first long-range tumor suppressor enhancer directly implicated in cancer.


Subject(s)
Enhancer Elements, Genetic , PTEN Phosphohydrolase , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptor, Notch1 , Animals , Cell Differentiation , Genes, Tumor Suppressor , Mice , PTEN Phosphohydrolase/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptor, Notch1/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...