ABSTRACT
Double strand break (DSB) repair is critical to maintaining the integrity of the genome. DSB repair deficiency underlies multiple pathologies, including cancer, chromosome instability syndromes, and, potentially, neurodevelopmental defects. DSB repair is mainly handled by two pathways: highly accurate homologous recombination (HR), which requires a sister chromatid for template-based repair, limited to S/G2 phases of the cell cycle, and canonical non-homologous end joining (c-NHEJ), available throughout the cell cycle in which minimum homology is sufficient for highly efficient yet error-prone repair. Some circumstances, such as cancer, require alternative highly mutagenic DSB repair pathways like microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA), which are triggered to attend to DNA damage. These non-canonical repair alternatives are emerging as prominent drivers of resistance in drug-based tumor therapies. Multiple DSB repair options require tight inter-pathway regulation to prevent unscheduled activities. In addition to this complexity, epigenetic modifications of the histones surrounding the DSB region are emerging as critical regulators of the DSB repair pathway choice. Modeling approaches to understanding DSBs repair pathway choice are advantageous to perform simulations and generate predictions on previously uncharacterized aspects of DSBs response. In this work, we present a Boolean network model of the DSB repair pathway choice that incorporates the knowledge, into a dynamic system, of the inter-pathways regulation involved in DSB repair, i.e., HR, c-NHEJ, SSA, and MMEJ. Our model recapitulates the well-characterized HR activity observed in wild-type cells in response to DSBs. It also recovers clinically relevant behaviors of BRCA1/FANCS mutants, and their corresponding drug resistance mechanisms ascribed to DNA repair gain-of-function pathogenic variants. Since epigenetic modifiers are dynamic and possible druggable targets, we incorporated them into our model to better characterize their involvement in DSB repair. Our model predicted that loss of the TIP60 complex and its corresponding histone acetylation activity leads to activation of SSA in response to DSBs. Our experimental validation showed that TIP60 effectively prevents activation of RAD52, a key SSA executor, and confirms the suitable use of Boolean network modeling for understanding DNA DSB repair.
Subject(s)
DNA Damage , DNA Repair , Cell Cycle , Mutagenesis , Cell DivisionABSTRACT
Introduction: The inherited bone marrow failure syndromes (IBMFSs) are a group of rare disorders characterized by bone marrow failure (BMF), physical abnormalities, and an increased risk of neoplasia. The National Institute of Pediatrics (INP) is a major medical institution in Mexico, where patients with BMF receive a complete approach that includes paraclinical tests. Readily recognizable features, such as the hematological and distinctive physical phenotypes, identified by clinical dysmorphologists, remain crucial for the diagnosis and management of these patients, particularly in circumstances where next-generation sequencing (NGS) is not easily available. Here, we describe a group of Mexican patients with a high clinical suspicion of an IBMFS. Methods: We performed a systematic retrospective analysis of the medical records of patients who had a high IBMFS suspicion at our institution from January 2018 to July 2021. An initial assessment included first ruling out acquired causes of BMF by the Hematology Department and referral of the patient to the Department of Human Genetics for physical examination to search for specific phenotypes suggesting an IBMFS. Patients with high suspicion of having an IBMFS were classified into two main groups: 1) specific IBMFS, including dyskeratosis congenita (DC), Diamond-Blackfan anemia (DBA), Shwachman-Diamond syndrome (SDS), thrombocytopenia with absent radii (TAR), and severe congenital neutropenia (SCN); 2) undefined IBMFS (UI). Results: We established a high suspicion of having an IBMFS in 48 patients. At initial evaluation, the most common hematologic features were bicytopenia (20%) and aplastic anemia (16%); three patients received hematopoietic stem cell transplantation. Among patients with a suspicion of an IBMFS, the most common physical abnormality was minor craniofacial features in 83% of patients and neurodevelopmental disorders in 52%. The specific suspicions that we built were DBA (31%), SDS (18%), DC (14%), TAR (4%), and SCN (4%), whereas 27% of cases remained as undefined IBMFS. SDS, TAR, and SCN were more commonly suspected at an earlier age (<1 year), followed by DBA (2 years) and DC (5 years). Conclusions: Thorough examination of reported clinical data allowed us to highly suspect a specific IBMFS in approximately 70% of patients; however, an important number of patients remained with suspicion of an undefined IBMFS. Implementation of NGS and telomere length measurement are forthcoming measures to improve IBMFS diagnosis in Mexico.
ABSTRACT
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
ABSTRACT
Fanconi anemia (FA) is a rare genetic disorder caused by pathogenic variants (PV) in at least 22 genes, which cooperate in the Fanconi anemia/Breast Cancer (FA/BRCA) pathway to maintain genome stability. PV in FANCA, FANCC, and FANCG account for most cases (~90%). This study evaluated the chromosomal, molecular, and physical phenotypic findings of a novel founder FANCG PV, identified in three patients with FA from the Mixe community of Oaxaca, Mexico. All patients presented chromosomal instability and a homozygous PV, FANCG: c.511-3_511-2delCA, identified by next-generation sequencing analysis. Bioinformatic predictions suggest that this deletion disrupts a splice acceptor site promoting the exon 5 skipping. Analysis of Cytoscan 750 K arrays for haplotyping and global ancestry supported the Mexican origin and founder effect of the variant, reaffirming the high frequency of founder PV in FANCG. The degree of bone marrow failure and physical findings (described through the acronyms VACTERL-H and PHENOS) were used to depict the phenotype of the patients. Despite having a similar frequency of chromosomal aberrations and genetic constitution, the phenotype showed a wide spectrum of severity. The identification of a founder PV could help for a systematic and accurate genetic screening of patients with FA suspicion in this population.
Subject(s)
Fanconi Anemia , Computational Biology , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group G Protein/genetics , Founder Effect , Homozygote , Humans , MexicoABSTRACT
Bone marrow failure (BMF) in Fanconi anemia (FA) patients results from dysfunctional hematopoietic stem and progenitor cells (HSPCs). To identify determinants of BMF, we performed single-cell transcriptome profiling of primary HSPCs from FA patients. In addition to overexpression of p53 and TGF-ß pathway genes, we identified high levels of MYC expression. We correspondingly observed coexistence of distinct HSPC subpopulations expressing high levels of TP53 or MYC in FA bone marrow (BM). Inhibiting MYC expression with the BET bromodomain inhibitor (+)-JQ1 reduced the clonogenic potential of FA patient HSPCs but rescued physiological and genotoxic stress in HSPCs from FA mice, showing that MYC promotes proliferation while increasing DNA damage. MYC-high HSPCs showed significant downregulation of cell adhesion genes, consistent with enhanced egress of FA HSPCs from bone marrow to peripheral blood. We speculate that MYC overexpression impairs HSPC function in FA patients and contributes to exhaustion in FA bone marrow.
Subject(s)
Fanconi Anemia , Animals , Bone Marrow , DNA Damage , Fanconi Anemia/genetics , Hematopoietic Stem Cells , Humans , Mice , Transforming Growth Factor betaABSTRACT
Fanconi anemia (FA) is a chromosome instability syndrome with congenital abnormalities, cancer predisposition and bone marrow failure (BMF). Although hematopoietic stem and progenitor cell (HSPC) transplantation is the recommended therapy, new therapies are needed for FA patients without suitable donors. BMF in FA is caused, at least in part, by a hyperactive growth-suppressive transforming growth factor ß (TGFß) pathway, regulated by the TGFß1, TGFß2, and TGFß3 ligands. Accordingly, the TGFß pathway is an attractive therapeutic target for FA. While inhibition of TGFß1 and TGFß3 promotes blood cell expansion, inhibition of TGFß2 is known to suppress hematopoiesis. Here, we report the effects of AVID200, a potent TGFß1- and TGFß3-specific inhibitor, on FA hematopoiesis. AVID200 promoted the survival of murine FA HSPCs in vitro. AVID200 also promoted in vitro the survival of human HSPCs from patients with FA, with the strongest effect in patients progressing to severe aplastic anemia or myelodysplastic syndrome (MDS). Previous studies have indicated that the toxic upregulation of the nonhomologous end-joining (NHEJ) pathway accounts, at least in part, for the poor growth of FA HSPCs. AVID200 downregulated the expression of NHEJ-related genes and reduced DNA damage in primary FA HSPC in vitro and in in vivo models. Collectively, AVID200 exhibits activity in FA mouse and human preclinical models. AVID200 may therefore provide a therapeutic approach to improving BMF in FA.
Subject(s)
Fanconi Anemia/drug therapy , Hematopoiesis/drug effects , Transforming Growth Factor beta1/antagonists & inhibitors , Transforming Growth Factor beta3/antagonists & inhibitors , Adolescent , Adult , Animals , Cell Survival/drug effects , Cells, Cultured , Child , Child, Preschool , Fanconi Anemia/metabolism , Fanconi Anemia/physiopathology , Female , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Humans , Male , Mice , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta3/metabolismABSTRACT
Fanconi anemia (FA), a chromosomal instability syndrome, is caused by inherited pathogenic variants in any of 22 FANC genes, which cooperate in the FA/BRCA pathway. This pathway regulates the repair of DNA interstrand crosslinks (ICLs) through homologous recombination. In FA proper repair of ICLs is impaired and accumulation of toxic DNA double strand breaks occurs. To repair this type of DNA damage, FA cells activate alternative error-prone DNA repair pathways, which may lead to the formation of gross structural chromosome aberrations of which radial figures are the hallmark of FA, and their segregation during cell division are the origin of subsequent aberrations such as translocations, dicentrics and acentric fragments. The deficiency in DNA repair has pleiotropic consequences in the phenotype of patients with FA, including developmental alterations, bone marrow failure and an extreme risk to develop cancer. The mechanisms leading to the physical abnormalities during embryonic development have not been clearly elucidated, however FA has features of premature aging with chronic inflammation mediated by pro-inflammatory cytokines, which results in tissue attrition, selection of malignant clones and cancer onset. Moreover, chromosomal instability and cell death are not exclusive of the somatic compartment, they also affect germinal cells, as evidenced by the infertility observed in patients with FA.
Subject(s)
Chromosomal Instability , DNA Repair , Fanconi Anemia/genetics , Aging/genetics , BRCA1 Protein/physiology , BRCA2 Protein/physiology , Bone Marrow Failure Disorders/etiology , Cell Cycle , Chromatids/ultrastructure , Chromosome Aberrations , Chromosomes, Human/ultrastructure , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Fanconi Anemia/complications , Fanconi Anemia/diagnosis , Fanconi Anemia Complementation Group C Protein/deficiency , Fanconi Anemia Complementation Group C Protein/genetics , Fanconi Anemia Complementation Group C Protein/physiology , Humans , Infertility/genetics , Neoplastic Syndromes, Hereditary/genetics , Phenotype , Protein Processing, Post-Translational , UbiquitinationABSTRACT
DNA damage adaptation (DDA) allows the division of cells with unrepaired DNA damage. DNA repair deficient cells might take advantage of DDA to survive. The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs), and deficiencies in this pathway cause a fraction of breast and ovarian cancers as well as FA, a chromosome instability syndrome characterized by bone marrow failure and cancer predisposition. FA cells are hypersensitive to ICLs; however, DDA might promote their survival. We present the FA-CHKREC Boolean Network Model, which explores how FA cells might use DDA. The model integrates the FA pathway with the G2 checkpoint and the checkpoint recovery (CHKREC) processes. The G2 checkpoint mediates cell-cycle arrest (CCA) and the CHKREC activates cell-cycle progression (CCP) after resolution of DNA damage. Analysis of the FA-CHKREC network indicates that CHKREC drives DDA in FA cells, ignoring the presence of unrepaired DNA damage and allowing their division. Experimental inhibition of WIP1, a CHKREC component, in FA lymphoblast and cancer cell lines prevented division of FA cells, in agreement with the prediction of the model.
ABSTRACT
BACKGROUND: Fanconi anemia (FA) (OMIM #227650) is a rare hereditary disease characterized by genomic instability. The clinical phenotype involves malformations, bone marrow failure, and cancer predisposition. Genetic heterogeneity is a remarkable feature of FA; at least 22 FANC genes are known to cooperate in a unique FA/BRCA repair pathway. A common rule on the mutations found in these genes is allelic heterogeneity, except for mutations known to have arisen from a founder effect like the FANCC c.67delG in the Dutch Mennonite Community. Here, we present an 11-year-old male patient, member of the Mennonite Community of Tamaulipas México, with a clinical and cytogenetic diagnosis of FA. METHOD: Chromosome fragility test was performed in all siblings. Genomic DNA was obtained from peripheral blood samples. Sanger sequencing was used to identify the FANCC c.67delG mutation (NC_000009.11(NM_000136.2):c.67delG p.(Asp23IlefsTer23)) and its accompanying haplotype. RESULTS: The FANCC c.67delG mutation in 13 members of his family confirmed a FA diagnosis in two of his siblings and identified heterozygous carriers. Haplotype analysis supports that in this family, FA is caused by the founder mutation that initially appeared in Mennonite Dutch and followed this population's migrations through Canada and further to Mexico. CONCLUSION: The identification of the FANCC c.67delG mutation in this family not only allows proper genetic counseling, but it also grants the possibility to raise awareness of FA risk among the Mennonite community living in Mexico.
Subject(s)
Fanconi Anemia Complementation Group C Protein/genetics , Fanconi Anemia/genetics , Founder Effect , Child , Fanconi Anemia/pathology , Gene Deletion , Heterozygote , Humans , Male , Mexico , PedigreeABSTRACT
Turner syndrome (TS) is a common genetic disorder. TS-phenotype includes short stature, gonadal dysgenesis, cardiac and kidney malformations, low bone mineral density (low-BMD) and thyroiditis. TS-phenotype varies from patient to patient and the cause is not clear, the genomic background may be an important contributor for this variability. Our aim was to identify the association of specific single nucleotide variants in the PTPN22, VDR, KL, and CYP27B1 genes and vitamin D-metabolism, heart malformation, renal malformation, thyroiditis, and low-BMD in 61 Mexican TS-patients. DNA samples were genotyped for SNVs: rs7975232 (VDR), rs9536282 (KL), rs4646536 (CYP27B1), and rs1599971 (PTPN22) using the KASP assay. Chi-square test under a recessive model and multifactorial dimensionality reduction method were used for analysis. We found a significant association between renal malformation and the rs9536282 (KL) variant and between rs4646536 (CYP27B1) and low-BMD, these variants may have modest effects on these characteristics but contribute to the variability of the TS phenotype. In addition, we identified gene-gene interactions between variants in genes KL, CYP27B1 and VDR related to vitamin D-metabolism and low-BMD in TS-patients. Our results support the idea that the genetic background of TS-patients contributes to the clinical variability seen in them.
Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Bone Diseases, Metabolic/genetics , Glucuronidase/genetics , Receptors, Calcitriol/genetics , Turner Syndrome/genetics , Urogenital Abnormalities/genetics , Adolescent , Adult , Bone Density/genetics , Bone Diseases, Metabolic/complications , Bone Diseases, Metabolic/epidemiology , Case-Control Studies , Child , Child, Preschool , Epistasis, Genetic , Female , Gene Frequency , Genetic Association Studies , Humans , Infant , Kidney/abnormalities , Klotho Proteins , Metabolic Networks and Pathways/genetics , Mexico/epidemiology , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Receptors, Calcitriol/metabolism , Turner Syndrome/complications , Turner Syndrome/epidemiology , Urogenital Abnormalities/complications , Urogenital Abnormalities/epidemiology , Vitamin D/metabolism , Young AdultABSTRACT
DNA is constantly exposed to endogenous and exogenous mutagenic stimuli that are capable of producing diverse lesions. In order to protect the integrity of the genetic material, a wide array of DNA repair systems that can target each specific lesion has evolved. Despite the availability of several repair pathways, a common general program known as the DNA damage response (DDR) is stimulated to promote lesion detection, signaling, and repair in order to maintain genetic integrity. The genes that participate in these pathways are subject to mutation; a loss in their function would result in impaired DNA repair and genomic instability. When the DDR is constitutionally altered, every cell of the organism, starting from development, will show DNA damage and subsequent genomic instability. The cellular response to this is either uncontrolled proliferation and cell cycle deregulation that ensues overgrowth, or apoptosis and senescence that result in tissue hypoplasia. These diverging growth abnormalities can clinically translate as cancer or growth retardation; both features can be found in chromosome instability syndromes (CIS). The analysis of the clinical, cellular, and molecular phenotypes of CIS with intrauterine growth retardation allows inferring that replication alteration is their unifying feature.
Subject(s)
DNA Damage/genetics , DNA Repair-Deficiency Disorders/genetics , Fetal Growth Retardation/genetics , Genomic Instability/genetics , DNA Repair/genetics , DNA Repair-Deficiency Disorders/pathology , Fetal Growth Retardation/pathology , Humans , MutationABSTRACT
BACKGROUND: Allan-Herndon-Dudley syndrome (AHDS) is an X-linked type of mental retardation resulting from hindered thyroid hormone access to neurons. Clustered nonrecurrent deletions of SLC16A2 exon 1 have been described in three patients with AHDS. We report a fourth patient with such a deletion and discuss possible mechanisms leading to these rearrangements. CASE PRESENTATION: A three-and-a-half-year-old male with clinical and biochemical AHDS phenotype and a history of normal neonatal screening for hypothyroidism underwent SLC16A2 molecular analysis. Unexpectedly, he showed skeletal signs of hypothyroidism. METHODS AND RESULTS: The exons of the SLC16A2 (MCT8) gene and the sequences surrounding exon 1 were amplified using PCR. The patient had a 36-kb deletion affecting exon 1 of SLC16A2. The deletion junction was subjected to bioinformatic analyses, along with two other reported exon 1 deletion junctions, identifying possible sequence features and mechanisms responsible for such genomic rearrangements. DISCUSSION/CONCLUSION: This patient had a classic AHDS phenotype with an unexpectedly large anterior fontanel and delayed bone age and dentition. Bioinformatic analyses suggested that exon 1 deletions in patients with AHDS are caused by microhomology-mediated replicative-based and nonhomologous end-joining mechanisms. Rearrangement susceptibility may be due to the size of intron 1 and the percentage of repeat sequences.
Subject(s)
Gene Deletion , Mental Retardation, X-Linked/genetics , Monocarboxylic Acid Transporters/genetics , Muscle Hypotonia/genetics , Muscular Atrophy/genetics , Child, Preschool , Computational Biology , Exons , Female , Humans , Hypothyroidism/complications , Hypothyroidism/genetics , Male , Phenotype , Symporters , Thyroxine/blood , Triiodothyronine/bloodABSTRACT
Germinal mosaicism should be considered when estimating the recurrence risk in families with Duchenne/Becker muscular dystrophy (D/BMD). Germinal mosaicism, however, has not been assessed in Mexican families with deletions in the DMD gene. To determine the distribution of deletions in the two hot spots and the proportion of de novo and transmitted deletions, we analyzed 153 individuals with D/BMD and a DMD partial deletion and 322 of their maternal female relatives. Predilection for the distal hot spot was observed in 112 families (73%), while gene dosage analysis of female relatives of D/BMD patients identified germinal mosaicism deletions in at least 11.6% of the patients' families, thought to result from de novo mutations. Recurrence risk due to germinal mosaicism justifies carrier detection in maternal female relatives and prenatal diagnosis in mothers of individuals with apparently de novo DMD deletions.