Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140852

ABSTRACT

Nature uses compact but functionalized biosynthetic fragments as building blocks to generate complex natural products. To leverage this strategy for the discovery of natural products with new scaffolds, we performed genome mining to identify biosynthetic gene clusters (BGCs) in fungi that embed genes that can synthesize targeted fragments. The three-enzyme pathway that biosynthesizes the strained dityrosine cyclophane in the herquline A pathway was used to identify a large number of potential BGCs that may use the cyclophane as a fragment. Characterization of a conserved BGC from fungal strains led to the isolation of octacyclin A, an octacyclic natural product with an unprecedented structure, including two hetero-[3.3.1]bicycles and a combination of fused, bridged, and macrocyclic rings. Biosynthetic steps leading to octacyclin A were fully elucidated using pathway reconstitution and enzymatic assays, unveiling intriguing chemical logic and new enzymatic reactions in building the octacyclic core. Our work demonstrates the potential utility of fragment-guided genome mining in expanding natural product chemical space.

2.
Org Lett ; 26(30): 6465-6470, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39046907

ABSTRACT

Reactions of α-pyrones with oxacyclic allenes in Diels-Alder trappings are described. We investigate regioselectivity trends and perform competition experiments to assess the influence of structural and electronic features on relative reaction rates. We also demonstrate the stereospecific trapping of an oxacyclic allene, which proceeds in high optical yield. This study provides insight into strained cyclic allene reactivity, as well as new synthetic tools for the rapid construction of complex, heterocyclic scaffolds.

3.
J Am Chem Soc ; 146(22): 15420-15427, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38768558

ABSTRACT

We report the strain-induced [2 + 2] cycloadditions of cyclic allenes for the assembly of highly substituted cyclobutanes. By judicious choice of trapping agent, complex scaffolds bearing heteroatoms, fused rings, contiguous stereocenters, spirocycles, and quaternary centers are ultimately accessible. Moreover, we show that the resulting cycloadducts can undergo thermal isomerization. This study provides an alternative strategy to photochemical [2 + 2] cycloadditions for accessing highly functionalized cyclobutanes, while validating the use of underexplored strained intermediates for the assembly of complex architectures.

4.
Angew Chem Int Ed Engl ; 63(32): e202406676, 2024 08 05.
Article in English | MEDLINE | ID: mdl-38695853

ABSTRACT

We describe a full account of our synthetic strategy leading to the first total synthesis of the manzamine alkaloid lissodendoric acid A . These efforts demonstrate that strained cyclic allenes are valuable synthetic building blocks and can be employed efficiently in total synthesis.


Subject(s)
Alkaloids , Stereoisomerism , Alkaloids/chemical synthesis , Alkaloids/chemistry , Molecular Structure
5.
Nat Synth ; 3(3): 329-336, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38645473

ABSTRACT

Strained cyclic allenes are short-lived intermediates that confine a functional group with a preferred linear geometry, an allene, into a small ring, inducing strain-driven reactivity. Nitrogen-containing variants, or azacyclic allenes, have proved valuable for the assembly of complex nitrogen-containing compounds. Whereas 3,4-azacyclic allenes, which bear a symmetrical core, have been the focus of multiple studies, their unsymmetrical 2,3-azacyclic counterparts have remained underexplored. In the present study, we report density functional theory studies investigating the structure of such unsymmetrical azacyclic allenes and experimental efforts to access and engage them in strain-promoted cycloadditions under mild conditions. Control experiments support either concerted or stepwise diradical mechanisms for these reactions, depending on the type of cycloaddition examined. Moreover, we generate the corresponding 2,3-oxacyclic allene and demonstrate its reactivity in cycloadditions and a metal-catalysed process. Given the scaffolds accessed, coupled with the observed selectivity trends, these results are expected to encourage the application of unsymmetrical heterocyclic allenes for the synthesis of heterocycles that bear a high fraction of sp3-hybridized atoms.

6.
Org Lett ; 26(17): 3602-3606, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38648196

ABSTRACT

We report an experimental and computational investigation of the likely mechanism of a cascade reaction. The reaction involves an intramolecular Diels-Alder reaction, followed by a C-C bond cleavage, to afford a complex bridged bicyclic product. As multiple reaction pathways could be envisioned for the latter step, the mechanism of the C-C bond cleavage step was investigated. Two reasonable reaction pathways were evaluated. Both computations and experiments indicate that the C-C bond cleavage step proceeds by a retro-carbonyl-ene pathway rather than a retro-aldol pathway. This report underscores the synergy between computational and experimental studies and establishes the mechanism of an interesting complexity-generating transformation.

7.
RNA Biol ; 21(1): 1-14, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38329136

ABSTRACT

In recent years, advances in biomedicine have revealed an important role for post-transcriptional mechanisms of gene expression regulation in pathologic conditions. In cancer in general and leukaemia specifically, RNA binding proteins have emerged as important regulator of RNA homoeostasis that are often dysregulated in the disease state. Having established the importance of these pathogenetic mechanisms, there have been a number of efforts to target RNA binding proteins using oligonucleotide-based strategies, as well as with small organic molecules. The field is at an exciting inflection point with the convergence of biomedical knowledge, small molecule screening strategies and improved chemical methods for synthesis and construction of sophisticated small molecules. Here, we review the mechanisms of post-transcriptional gene regulation, specifically in leukaemia, current small-molecule based efforts to target RNA binding proteins, and future prospects.


Subject(s)
Hematologic Neoplasms , Leukemia , Humans , Gene Expression Regulation , RNA/genetics , Hematologic Neoplasms/genetics , Leukemia/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
8.
Chem Sci ; 15(7): 2593-2600, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362425

ABSTRACT

Amide cross-couplings that rely on C-N bond activation by transition metal catalysts have emerged as valuable synthetic tools. Despite numerous discoveries in this field, no catalytic asymmetric variants have been disclosed to date. Herein, we demonstrate the first such transformation, which is the Mizoroki-Heck cyclization of amide substrates using asymmetric nickel catalysis. This proof-of-concept study provides an entryway to complex enantioenriched polycyclic scaffolds and advances the field of amide C-N bond activation chemistry.

9.
Eur J Med Res ; 29(1): 124, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360737

ABSTRACT

Tumor progression and eradication have long piqued the scientific community's interest. Recent discoveries about the role of chemokines and cytokines in these processes have fueled renewed interest in related research. These roles are frequently viewed as contentious due to their ability to both suppress and promote cancer progression. As a result, this review critically appraised existing literature to discuss the unique roles of cytokines and chemokines in the tumor microenvironment, as well as the existing challenges and future opportunities for exploiting these roles to develop novel and targeted treatments. While these modulatory molecules play an important role in tumor suppression via enhanced cancer-cell identification by cytotoxic effector cells and directly recruiting immunological effector cells and stromal cells in the TME, we observed that they also promote tumor proliferation. Many cytokines, including GM-CSF, IL-7, IL-12, IL-15, IL-18, and IL-21, have entered clinical trials for people with advanced cancer, while the FDA has approved interferon-alpha and IL-2. Nonetheless, low efficacy and dose-limiting toxicity limit these agents' full potential. Conversely, Chemokines have tremendous potential for increasing cancer immune-cell penetration of the tumor microenvironment and promoting beneficial immunological interactions. When chemokines are combined with cytokines, they activate lymphocytes, producing IL-2, CD80, and IL-12, all of which have a strong anticancer effect. This phenomenon opens the door to the development of effective anticancer combination therapies, such as therapies that can reverse cancer escape, and chemotaxis of immunosuppressive cells like Tregs, MDSCs, and TAMs.


Subject(s)
Cytokines , Neoplasms , Humans , Interleukin-2 , Chemokines , Neoplasms/drug therapy , Interleukin-12 , Tumor Microenvironment
10.
Prog Cardiovasc Dis ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38253161

ABSTRACT

Personalized medicine has witnessed remarkable progress with the emergence of RNA therapy, offering new possibilities for the treatment of various diseases, and in particular in the context of cardiovascular disease (CVD). The ability to target the human genome through RNA manipulation offers great potential not only in the treatment of cardiac pathologies but also in their diagnosis and prevention, notably in cases of hyperlipidemia and myocardial infarctions. While only a few RNA-based treatments have entered clinical trials or obtained approval from the US Food and Drug Administration, the growing body of research on this subject is promising. However, the development of RNA therapies faces several challenges that must be overcome. These include the efficient delivery of drugs into cells, the potential for immunogenic responses, and safety. Resolving these obstacles is crucial to advance the development of RNA therapies. This review explores the newest developments in medical studies, treatment plans, and results related to RNA therapies for heart disease. Furthermore, it discusses the exciting possibilities and difficulties in this innovative area of research.

11.
Curr Probl Cardiol ; 49(3): 102378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185434

ABSTRACT

Coronary Artery Disease (CAD) represents a persistent global health menace, particularly prevalent in Eastern European nations. Often asymptomatic until its advanced stages, CAD can precipitate life-threatening events like myocardial infarction or stroke. While conventional risk factors provide some insight into CAD risk, their predictive accuracy is suboptimal. Amidst this, Coronary Calcium Scoring (CCS), facilitated by non-invasive computed tomography (CT), emerges as a superior diagnostic modality. By quantifying calcium deposits in coronary arteries, CCS serves as a robust indicator of atherosclerotic burden, thus refining risk stratification and guiding therapeutic interventions. Despite certain limitations, CCS stands as an instrumental tool in CAD management and in thwarting adverse cardiovascular incidents. This review delves into the pivotal role of CCS in CAD diagnosis and treatment, elucidates the involvement of calcium in atherosclerotic plaque formation, and outlines the principles and indications of utilizing CCS for predicting major cardiovascular events.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Myocardial Infarction , Humans , Coronary Artery Disease/diagnosis , Coronary Artery Disease/prevention & control , Calcium , Coronary Angiography/methods , Risk Factors , Predictive Value of Tests
12.
J Neurosci Res ; 102(1): e25261, 2024 01.
Article in English | MEDLINE | ID: mdl-38284858

ABSTRACT

Membrane trafficking is a physiological process encompassing different pathways involved in transporting cellular products across cell membranes to specific cell locations via encapsulated vesicles. This process is required for cells to mature and function properly, allowing them to adapt to their surroundings. The retromer complex is a complex composed of nexin proteins and peptides that play a vital role in the endosomal pathway of membrane trafficking. In humans, any interference in normal membrane trafficking or retromer complex can cause profound changes such as those seen in neurodegenerative disorders such as Alzheimer's and Parkinson's. Several studies have explored the potential causative mechanisms in developing both disease processes; however, the role of retromer trafficking in their pathogenesis is becoming increasingly significant with promising therapeutic applications. This manuscript describes the processes involved in membrane transport and the roles of the retromer in the onset and progression of Alzheimer's and Parkinson's. Moreover, we will also explore how these aberrant mechanisms may serve as possible avenues for treatment development in both diseases and the prospect of its future application.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , Cell Membrane , Biological Transport , Microtubule-Associated Proteins
14.
ACS Chem Biol ; 18(9): 2023-2029, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37578929

ABSTRACT

We report studies pertaining to two isomeric hexahydrocannabinols (HHCs), (9R)-HHC and (9S)-HHC, which are derivatives of the psychoactive cannabinoids Δ9- and Δ8-THC. HHCs have been known since the 1940s, but have become increasingly available to the public in the United States and are typically sold as a mixture of isomers. We show that (9R)-HHC and (9S)-HHC can be prepared using hydrogen-atom transfer reduction, with (9R)-HHC being accessed as the major diastereomer. In addition, we report the results of cannabinoid receptor studies for (9R)-HHC and (9S)-HHC. The binding affinity and activity of isomer (9R)-HHC are similar to that of Δ9-THC, whereas (9S)-HHC binds strongly in cannabinoid receptor studies but displays diminished activity in functional assays. This is notable, as our examination of the certificates of analysis for >60 commercially available HHC products show wide variability in HHC isomer ratios (from 0.2:1 to 2.4:1 of (9R)-HHC to (9S)-HHC). These studies suggest the need for greater research and systematic testing of new cannabinoids. Such efforts would help inform cannabis-based policies, ensure the safety of cannabinoids, and potentially lead to the discovery of new medicines.


Subject(s)
Cannabinoids , Cannabinoids/metabolism , Receptors, Cannabinoid , Isomerism
15.
Mater Adv ; 4(15): 3351-3355, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37588776

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are important compounds in materials chemistry, particularly for optoelectronic applications. One strategy for tuning PAH properties involves the net exchange of carbon atoms for heteroatoms, such as nitrogen. We report a comparative study of the well-known fluorophore 9,10-diphenylanthracene with an aza analog. The latter compound is accessed using a short sequence involving the use of two strained cyclic alkynes, benzyne and a 3,4-piperidyne, in Diels-Alder cycloaddition sequences. Comparative studies of 9,10-diphenylanthracene and the aza-analog show how the addition of a single nitrogen atom impacts electrochemical and optical properties. Organic light-emitting diode (OLED) devices were prepared using both compounds, which showed that nitrogen substitution leads to an unexpected red shift in electroluminescence, likely due to exciplex formation between the active layer and the 4,4'-N,N'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB) hole-transport layer. These studies highlight a unique approach to accessing heteroatom-containing PAHs, while underscoring the impact of heteroatoms on OLED device performance.

16.
J Med Virol ; 95(8): e28986, 2023 08.
Article in English | MEDLINE | ID: mdl-37534818

ABSTRACT

The Ebola virus, a member of the filoviridae family of viruses, is responsible for causing Ebola Virus Disease (EVD) with a case fatality rate as high as 50%. The largest EVD outbreak was recorded in West Africa from March 2013 to June 2016, leading to over 28 000 cases and 11 000 deaths. It affected several countries, including Nigeria, Senegal, Guinea, Liberia, and Sierra Leone. Until then, EVD was predominantly reported in remote villages in central and west Africa close to tropical rainforests. Human mobility, behavioral and cultural norms, the use of bushmeat, burial customs, preference for traditional remedies and treatments, and resistance to health interventions are just a few of the social factors that considerably aid and amplify the risk of transmission. The scale and persistence of recent ebola outbreaks, as well as the risk of widespread global transmission and its ability for bioterrorism, have led to a rethinking of public health strategies to curb the disease, such as the expedition of Ebola vaccine production. However, as vaccine production lags in the subcontinent, among other challenges, the risk of another ebola outbreak is likely and feared by public health authorities in the region. This review describes the inequality of vaccine production in Africa and the resurgence of EVD, emphasizing the significance of health equality.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Africa, Western/epidemiology , Disease Outbreaks/prevention & control , Nigeria
17.
J Org Chem ; 88(15): 11358-11362, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37467382

ABSTRACT

With increasing marijuana legalization, there is a growing need for technology that can determine if an individual is impaired due to recent marijuana usage. The electrochemical oxidation of Δ9-THC to form its corresponding quinones can be used as a framework to develop an electrochemical sensor for Δ9-THC. This study describes an electrochemical oxidation of Δ9-THC that uses a copper anode, a platinum cathode, and an atmosphere of oxygen. The oxidation is feasible at nanomolar concentrations, which approaches the reactivity that is necessary for developing a real-world marijuana breathalyzer. Moreover, we show that vaporized Δ9-THC can be captured directly in an electrolyte medium and subjected to electrochemical oxidation, thus paving the way for use in future technology development.


Subject(s)
Cannabis , Dronabinol , Oxidation-Reduction
18.
Prog Cardiovasc Dis ; 79: 89-99, 2023.
Article in English | MEDLINE | ID: mdl-37302652

ABSTRACT

Calcific aortic valve stenosis (CAS), the most prevalent valvular disease worldwide, has been demonstrated to frequently occur in conjunction with coronary artery disease (CAD), the third leading cause of death worldwide. Atherosclerosis has been proven to be the main mechanism involved in CAS and CAD. Evidence also exists that obesity, diabetes, and metabolic syndrome (among others), along with specific genes involved in lipid metabolism, are important risk factors for CAS and CAD, leading to common pathological processes of atherosclerosis in both diseases. Therefore, it has been suggested that CAS could also be used as a marker of CAD. An understanding of the commonalities between the two conditions may improve therapeutic strategies for treating both CAD and CAS. This review explores the common pathogenesis and disparities between CAS and CAD, alongside their etiology. It also discusses clinical implications and provides evidence-based recommendations for the clinical management of both diseases.


Subject(s)
Aortic Valve Stenosis , Atherosclerosis , Coronary Artery Disease , Humans , Coronary Artery Disease/epidemiology , Coronary Artery Disease/therapy , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Aortic Valve Stenosis/epidemiology , Aortic Valve Stenosis/therapy , Atherosclerosis/pathology , Risk Factors
19.
Org Lett ; 25(30): 5553-5557, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37387644

ABSTRACT

We report an approach to the core of the manzamine alkaloid keramaphidin B that relies on the strain-promoted cycloaddition of an azacyclic allene with a pyrone trapping partner. The cycloaddition is tolerant of nitrile and primary amide functional groups and can be complemented with a subsequent retro-Diels-Alder step. These efforts demonstrate that strained cyclic allenes can be used to build significant structural complexity and should encourage further studies of these fleeting intermediates.


Subject(s)
Alkadienes , Alkaloids , Alkadienes/chemistry , Pyridines , Cycloaddition Reaction , Nitriles/chemistry
20.
Org Lett ; 25(27): 5044-5048, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37379230

ABSTRACT

We report a concise approach to phenanthroindolizidine alkaloids, wherein strained azacyclic alkynes are intercepted in Pd-catalyzed annulations. Two types of strained intermediates were evaluated: a functionalized piperidyne and a new strained intermediate, an indolizidyne. We show that each can be employed, ultimately allowing access to three natural products: tylophorine, tylocrebine, and isotylocrebine. These efforts demonstrate the successful merger of strained azacyclic alkyne chemistry with transition-metal catalysis for the construction of complex heterocycles.


Subject(s)
Alkynes , Transition Elements , Phenanthrolines , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL