Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Publication year range
1.
Medicina (B.Aires) ; Medicina (B.Aires);84(supl.1): 2-8, mayo 2024. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1558476

ABSTRACT

Resumen La aparición de convulsiones es frecuente durante el periodo neonatal debido a las características de inma durez funcional del cerebro es este periodo. La aparición de estas convulsiones puede llevar a un diagnóstico de epilepsia neonatal, que suele estar asociado a alteracio nes estructurales del cerebro durante el neurodesarrollo. Aproximadamente el 50% de las personas con epilepsia activa padecen al menos un trastorno médico comórbi do, y esto hace que cambie la evolución de la epilepsia. La presencia de trastornos neurológicos que preceden a la aparición de la epilepsia indica que alteraciones es tructurales y/o funcionales del cerebro subyacentes pue den ser causa de la predisposición a padecer epilepsia y de los procesos comórbidos de manera independiente. En esta revisión describimos los procesos cerebrales estructurales y funcionales que subyacen a la aparición de epilepsia neonatal y sus comorbilidades.


Abstract The occurrence of seizures is frequent during the neonatal period due to the functional immaturity of the brain.The presence of these seizures may lead to a diagnosis of neonatal epilepsy, which is usually as sociated with structural alterations of the brain during neurodevelopment. Approximately 50% of people with active epilepsy have at least one comorbid medical di sorder, and the existence of a comorbid process changes the course of the epilepsy. The presence of neurologic disorders preceding the onset of epilepsy indicates that underlying neurobiological alterations may indepen dently cause the predisposition to epilepsy and comor bid processes. In this review we describe the structural and functional brain processes underlying the onset of neonatal epilepsy and its comorbidities.

2.
Medicina (B Aires) ; 84 Suppl 1: 2-8, 2024 Mar.
Article in Spanish | MEDLINE | ID: mdl-38350617

ABSTRACT

The occurrence of seizures is frequent during the neonatal period due to the functional immaturity of the brain.The presence of these seizures may lead to a diagnosis of neonatal epilepsy, which is usually associated with structural alterations of the brain during neurodevelopment. Approximately 50% of people with active epilepsy have at least one comorbid medical disorder, and the existence of a comorbid process changes the course of the epilepsy. The presence of neurologic disorders preceding the onset of epilepsy indicates that underlying neurobiological alterations may independently cause the predisposition to epilepsy and comorbid processes. In this review we describe the structural and functional brain processes underlying the onset of neonatal epilepsy and its comorbidities.


La aparición de convulsiones es frecuente durante el periodo neonatal debido a las características de inmadurez funcional del cerebro es este periodo. La aparición de estas convulsiones puede llevar a un diagnóstico de epilepsia neonatal, que suele estar asociado a alteraciones estructurales del cerebro durante el neurodesarrollo. Aproximadamente el 50% de las personas con epilepsia activa padecen al menos un trastorno médico comórbido, y esto hace que cambie la evolución de la epilepsia. La presencia de trastornos neurológicos que preceden a la aparición de la epilepsia indica que alteraciones estructurales y/o funcionales del cerebro subyacentes pueden ser causa de la predisposición a padecer epilepsia y de los procesos comórbidos de manera independiente. En esta revisión describimos los procesos cerebrales estructurales y funcionales que subyacen a la aparición de epilepsia neonatal y sus comorbilidades.


Subject(s)
Epilepsy , Infant, Newborn , Humans , Epilepsy/diagnosis , Seizures/etiology , Brain , Comorbidity
3.
Front Neuroanat ; 16: 868345, 2022.
Article in English | MEDLINE | ID: mdl-35601999

ABSTRACT

Most of the studies on neurochemical mapping, connectivity, and physiology in the hypothalamic region were carried out in rats and under the columnar morphologic paradigm. According to the columnar model, the entire hypothalamic region lies ventrally within the diencephalon, which includes preoptic, anterior, tuberal, and mamillary anteroposterior regions, and sometimes identifying dorsal, intermediate, and ventral hypothalamic partitions. This model is weak in providing little or no experimentally corroborated causal explanation of such subdivisions. In contrast, the modern prosomeric model uses different axial assumptions based on the parallel courses of the brain floor, alar-basal boundary, and brain roof (all causally explained). This model also postulates that the hypothalamus and telencephalon jointly form the secondary prosencephalon, separately from and rostral to the diencephalon proper. The hypothalamus is divided into two neuromeric (transverse) parts called peduncular and terminal hypothalamus (PHy and THy). The classic anteroposterior (AP) divisions of the columnar hypothalamus are rather seen as dorsoventral subdivisions of the hypothalamic alar and basal plates. In this study, we offered a prosomeric immunohistochemical mapping in the rat of hypothalamic cells expressing tyrosine hydroxylase (TH), which is the enzyme that catalyzes the conversion of L-tyrosine to levodopa (L-DOPA) and a precursor of dopamine. This mapping was also combined with markers for diverse hypothalamic nuclei [agouti-related peptide (Agrp), arginine vasopressin (Avp), cocaine and amphetamine-regulated transcript (Cart), corticotropin releasing Hormone (Crh), melanin concentrating hormone (Mch), neuropeptide Y (Npy), oxytocin/neurophysin I (Oxt), proopiomelanocortin (Pomc), somatostatin (Sst), tyrosine hidroxilase (Th), and thyrotropin releasing hormone (Trh)]. TH-positive cells are particularly abundant within the periventricular stratum of the paraventricular and subparaventricular alar domains. In the tuberal region, most labeled cells are found in the acroterminal arcuate nucleus and in the terminal periventricular stratum. The dorsal retrotuberal region (PHy) contains the A13 cell group of TH-positive cells. In addition, some TH cells appear in the perimamillary and retromamillary regions. The prosomeric model proved useful for determining the precise location of TH-positive cells relative to possible origins of morphogenetic signals, thus aiding potential causal explanation of position-related specification of this hypothalamic cell type.

4.
Medicina (B.Aires) ; Medicina (B.Aires);82(supl.1): 2-5, mar. 2022. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1375885

ABSTRACT

Resumen La neurociencia moderna aborda el problema de funcionamiento global del cerebro para poder comprender los procesos neurobiológicos que subyacen a las funciones mentales, y especialmente, a la consciencia. La actividad cerebral está basada en el intercambio de información entre neuronas a través de contactos llamados sinapsis. Las neuronas forman redes de conexión entre ellas (circuitos), que están dedicados a procesar una parcela específica de información (visual, auditiva, motora…). Los circuitos establecen redes entre ellos, combinando diferentes modalidades de información para generar lo que conocemos como actividad mental. El estudio de las conexiones entre regiones corticales, que se ha llamado conectoma, está siendo abordado mediante técnicas de neuroimagen como la resonancia magnética nuclear, que aportan datos sobre la densidad de conexiones del cerebro. La capacidad del cerebro de crear nuevas conexiones en función de la experiencia (plasticidad cerebral), sugiere que el conectoma es una estructura dinámica en constante interacción con estímulos externos e internos. La pregunta sobre si el conocimiento del conectoma de un individuo nos per mitiría predecir su conducta parece que todavía no tiene respuesta clara, porque no conocemos los parámetros físicos que ligan la complejidad de las conexiones del cerebro con la aparición de las funciones mentales y de la consciencia. Por el momento, parece que la compleja e impredecible conducta no es el simple resultado de procesos lineales de interacción neuronal. La incertidumbre prima al determinismo, lo que abre la puerta a la posibilidad de un mecanismo cuántico para explicar la consciencia.


Abstract Modern neuroscience addresses the problem of the global functioning of the brain in order to understand the neurobiological processes that underlie mental functions, and especially, consciousness. Brain activity is based on the exchange of infor mation between neurons through contacts or synapses. Neurons form networks of connection between them (circuits), which are dedicated to processing a specific type of information (visual, auditory, motor…). The circuits establish networks among themselves, combining different modalities of information to generate what we know as mental activity. The study of connections between cortical regions, which has been called connectome, is being approached through neuroimaging techniques such as nuclear magnetic resonance that provide data on the density of connections in the brain. The brain's ability to create new connections based on experience (brain plasticity) suggests that the connectome is a dynamic structure in constant interaction with external and internal stimuli. The question about whether knowledge of an individual's connectome would allow us to predict his or her behavior seems to have no clear answer yet, because we do not know the physical parameters that link the complexity of the brain's connections with the appearance of mental functions and consciousness. At the moment, it seems that the complex and unpredictable behavior is not the simple result of linear processes of neuronal interaction. Uncertainty prevails over determinism, which opens the door to the possibility of a quantum mechanism to explain consciousness.

5.
Medicina (B Aires) ; 82 Suppl 1: 2-5, 2022 Feb 02.
Article in Spanish | MEDLINE | ID: mdl-35171799

ABSTRACT

Modern neuroscience addresses the problem of the global functioning of the brain in order to understand the neurobiological processes that underlie mental functions, and especially, consciousness. Brain activity is based on the exchange of information between neurons through contacts or synapses. Neurons form networks of connection between them (circuits), which are dedicated to processing a specific type of information (visual, auditory, motor ...). The circuits establish networks among themselves, combining different modalities of information to generate what we know as mental activity. The study of connections between cortical regions, which has been called connectome, is being approached through neuroimaging techniques such as nuclear magnetic resonance that provide data on the density of connections in the brain. The brain's ability to create new connections based on experience (brain plasticity) suggests that the connectome is a dynamic structure in constant interaction with external and internal stimuli. The question about whether knowledge of an individual's connectome would allow us to predict his or her behavior seems to have no clear answer yet, because we do not know the physical parameters that link the complexity of the brain's connections with the appearance of mental functions and consciousness. At the moment, it seems that the complex and unpredictable behavior is not the simple result of linear processes of neuronal interaction. Uncertainty prevails over determinism, which opens the door to the possibility of a quantum mechanism to explain consciousness.


La neurociencia moderna aborda el problema de funcionamiento global del cerebro para poder comprender los procesos neurobiológicos que subyacen a las funciones mentales, y especialmente, a la consciencia. La actividad cerebral está basada en el intercambio de información entre neuronas a través de contactos llamados sinapsis. Las neuronas forman redes de conexión entre ellas (circuitos), que están dedicados a procesar una parcela específica de información (visual, auditiva, motora ...). Los circuitos establecen redes entre ellos, combinando diferentes modalidades de información para generar lo que conocemos como actividad mental. El estudio de las conexiones entre regiones corticales, que se ha llamado conectoma, está siendo abordado mediante técnicas de neuroimagen como la resonancia magnética nuclear, que aportan datos sobre la densidad de conexiones del cerebro. La capacidad del cerebro de crear nuevas conexiones en función de la experiencia (plasticidad cerebral), sugiere que el conectoma es una estructura dinámica en constante interacción con estímulos externos e internos. La pregunta sobre si el conocimiento del conectoma de un individuo nos permitiría predecir su conducta parece que todavía no tiene respuesta clara, porque no conocemos los parámetros físicos que ligan la complejidad de las conexiones del cerebro con la aparición de las funciones mentales y de la consciencia. Por el momento, parece que la compleja e impredecible conducta no es el simple resultado de procesos lineales de interacción neuronal. La incertidumbre prima al determinismo, lo que abre la puerta a la posibilidad de un mecanismo cuántico para explicar la consciencia.


Subject(s)
Connectome , Neurosciences , Brain/physiology , Connectome/methods , Consciousness/physiology , Female , Humans , Male , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL