Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
JAMA Netw Open ; 7(7): e2420259, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958973

ABSTRACT

Importance: Recognizing associations between exposure to common environmental toxicants and mental disorders such as depression is crucial for guiding targeted mechanism research and the initiation of disease prevention efforts. Objectives: To comprehensively screen and assess the associations between potential environmental toxicants and depressive symptoms and to assess whether systemic inflammation serves as a mediator. Design, Setting, and Participants: A total of 3427 participants from the 2013-2014 and 2015-2016 waves of the National Health and Nutrition Examination and Survey who had information on blood or urine concentrations of environmental toxicants and depression scores assessed by the 9-item Patient Health Questionnaire (PHQ-9) were included. Statistical analysis was performed from July 1, 2023, to January 31, 2024. Exposures: Sixty-two toxicants in 10 categories included acrylamide, arsenic, ethylene oxide, formaldehyde, iodine, metals, nicotine metabolites, polycyclic aromatic hydrocarbons, volatile organic compound (VOC) metabolites; and perchlorate, nitrate, and thiocyanate. Main Outcomes and Measures: An exposome-wide association study and the deletion-substitution-addition algorithm were used to assess associations with depression scores (PHQ-9 ≥5) adjusted for other important covariates. A mediation analysis framework was used to evaluate the mediating role of systemic inflammation assessed by the peripheral white blood cell count. Results: Among the 3427 adults included, 1735 (50.6%) were women, 2683 (78.3%) were younger than 65 years, and 744 (21.7%) were 65 years or older, with 839 (24.5%) having depressive symptoms. In terms of race and ethnicity, 570 participants (16.6%) were Mexican American, 679 (19.8%) were non-Hispanic Black, and 1314 (38.3%) were non-Hispanic White. We identified associations between 27 chemical compounds or metals in 6 of 10 categories of environmental toxicants and the prevalence of depressive symptoms, including the VOC metabolites N-acetyl-S-(2-hydroxy-3-butenyl)-l-cysteine (odds ratio [OR], 1.74 [95% CI, 1.38, 2.18]) and total nicotine equivalent-2 (OR, 1.42 [95% CI, 1.26-1.59]). Men and younger individuals appear more vulnerable to environmental toxicants than women and older individuals. Peripheral white blood cell count mediated 5% to 19% of the associations. Conclusions and Relevance: In this representative cross-sectional study of adults with environmental toxicant exposures, 6 categories of environmental toxicants were associated with depressive symptoms with mediation by systemic inflammation. This research provides insight into selecting environmental targets for mechanistic research into the causes of depression and facilitating efforts to reduce environmental exposures.


Subject(s)
Depression , Environmental Exposure , Nutrition Surveys , Humans , Female , Male , Middle Aged , Adult , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Depression/epidemiology , United States/epidemiology , Aged , Hazardous Substances/adverse effects
2.
Stroke ; 55(7): 1847-1856, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776169

ABSTRACT

BACKGROUND: Extreme temperatures contribute significantly to global mortality. While previous studies on temperature and stroke-specific outcomes presented conflicting results, these studies were predominantly limited to single-city or single-country analyses. Their findings are difficult to synthesize due to variations in methodologies and exposure definitions. METHODS: Within the Multi-Country Multi-City Network, we built a new mortality database for ischemic and hemorrhagic stroke. Applying a unified analysis protocol, we conducted a multinational case-crossover study on the relationship between extreme temperatures and stroke. In the first stage, we fitted a conditional quasi-Poisson regression for daily mortality counts with distributed lag nonlinear models for temperature exposure separately for each city. In the second stage, the cumulative risk from each city was pooled using mixed-effect meta-analyses, accounting for clustering of cities with similar features. We compared temperature-stroke associations across country-level gross domestic product per capita. We computed excess deaths in each city that are attributable to the 2.5% hottest and coldest of days based on each city's temperature distribution. RESULTS: We collected data for a total of 3 443 969 ischemic strokes and 2 454 267 hemorrhagic stroke deaths from 522 cities in 25 countries. For every 1000 ischemic stroke deaths, we found that extreme cold and hot days contributed 9.1 (95% empirical CI, 8.6-9.4) and 2.2 (95% empirical CI, 1.9-2.4) excess deaths, respectively. For every 1000 hemorrhagic stroke deaths, extreme cold and hot days contributed 11.2 (95% empirical CI, 10.9-11.4) and 0.7 (95% empirical CI, 0.5-0.8) excess deaths, respectively. We found that countries with low gross domestic product per capita were at higher risk of heat-related hemorrhagic stroke mortality than countries with high gross domestic product per capita (P=0.02). CONCLUSIONS: Both extreme cold and hot temperatures are associated with an increased risk of dying from ischemic and hemorrhagic strokes. As climate change continues to exacerbate these extreme temperatures, interventional strategies are needed to mitigate impacts on stroke mortality, particularly in low-income countries.


Subject(s)
Stroke , Humans , Stroke/mortality , Male , Female , Aged , Cross-Over Studies , Hemorrhagic Stroke/mortality , Ischemic Stroke/mortality , Middle Aged , Hot Temperature/adverse effects , Extreme Heat/adverse effects
3.
Sci Total Environ ; 927: 171897, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38522542

ABSTRACT

BACKGROUND: Systemic inflammation contributes to cardiovascular risk and chronic obstructive pulmonary disease (COPD) pathophysiology. Associations between systemic inflammation and exposure to ambient fine particulate matter (PM ≤ 2.5 µm diameter; PM2.5), and black carbon (BC), a PM2.5 component attributable to traffic and other sources of combustion, infiltrating indoors are not well described. METHODS: Between 2012 and 2017, COPD patients completed in-home air sampling over one-week intervals, up to four times (seasonally), followed by measurement of plasma biomarkers of systemic inflammation, C-reactive protein (CRP) and interleukin-6 (IL-6), and endothelial activation, soluble vascular adhesion molecule-1 (sVCAM-1). Ambient PM2.5, BC and sulfur were measured at a central site. The ratio of indoor/ambient sulfur in PM2.5, a surrogate for fine particle infiltration, was used to estimate indoor BC and PM2.5 of ambient origin. Linear mixed effects regression with a random intercept for each participant was used to assess associations between indoor and indoor of ambient origin PM2.5 and BC with each biomarker. RESULTS: 144 participants resulting in 482 observations were included in the analysis. There were significant positive associations between indoor BC and indoor BC of ambient origin with CRP [%-increase per interquartile range (IQR);95 % CI (13.2 %;5.2-21.8 and 11.4 %;1.7-22.1, respectively)]. Associations with indoor PM2.5 and indoor PM2.5 of ambient origin were weaker. There were no associations with IL-6 or sVCAM-1. CONCLUSIONS: In homes of patients with COPD without major sources of combustion, indoor BC is mainly attributable to the infiltration of ambient sources of combustion indoors. Indoor BC of ambient origin is associated with increases in systemic inflammation in patients with COPD, even when staying indoors.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Biomarkers , Particulate Matter , Pulmonary Disease, Chronic Obstructive , Soot , Pulmonary Disease, Chronic Obstructive/blood , Humans , Particulate Matter/analysis , Biomarkers/blood , Soot/analysis , Soot/adverse effects , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Air Pollution, Indoor/adverse effects , Male , Female , Air Pollutants/analysis , Air Pollutants/adverse effects , Aged , Middle Aged , Environmental Exposure/statistics & numerical data , Interleukin-6/blood , C-Reactive Protein/analysis , Inflammation/blood
4.
Mil Med ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38536226

ABSTRACT

INTRODUCTION: The effects of smoking on lung function among post-9/11 Veterans deployed to environments with high levels of ambient particulate matter are incompletely understood. MATERIALS AND METHODS: We analyzed interim data (04/2018-03/2020) from the Veterans Affairs (VA) Cooperative Studies Program #595, "Service and Health Among Deployed Veterans". Veterans with ≥1 land-based deployments enrolled at 1 of 6 regional Veterans Affairs sites completed questionnaires and spirometry. Multivariable linear regression models assessed associations between cigarette smoking (cumulative, deployment-related and non-deployment-related) with pulmonary function. RESULTS: Among 1,836 participants (mean age 40.7 ± 9.6, 88.6% male), 44.8% (n = 822) were ever-smokers (mean age 39.5 ± 9.5; 91.2% male). Among ever-smokers, 86% (n = 710) initiated smoking before deployment, while 11% (n = 90) initiated smoking during deployment(s). Smoking intensity was 50% greater during deployment than other periods (0.75 versus 0.50 packs-per-day; P < .05), and those with multiple deployments (40.4%) were more likely to smoke during deployment relative to those with single deployments (82% versus 74%). Total cumulative pack-years (median [IQR] = 3.8 [1, 10]) was inversely associated with post-bronchodilator FEV1%-predicted (-0.82; [95% CI] = [-1.25, -0.50] %-predicted per 4 pack-years) and FEV1/FVC%-predicted (-0.54; [95% CI] = [-0.78, -0.43] %-predicted per 4 pack-years). Deployment-related pack-years demonstrated similar point estimates of associations with FEV1%-predicted (-0.61; [95% CI] = [-2.28, 1.09]) and FEV1/FVC%-predicted (-1.09; [95% CI] = [-2.52, 0.50]) as non-deployment-related pack-years (-0.83; [95% CI] = [-1.26, -0.50] for FEV1%-predicted; -0.52; [95% CI] = [-0.73, -0.36] for FEV1/FVC%-predicted). CONCLUSIONS: Although cumulative pack-years smoking was modest in this cohort, an inverse association with pulmonary function was detectable. Deployment-related pack-years had a similar association with pulmonary function compared to non-deployment-related pack-years.

5.
Occup Environ Med ; 81(2): 59-65, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37968126

ABSTRACT

OBJECTIVES: Characterise inhalational exposures during deployment to Afghanistan and Southwest Asia and associations with postdeployment respiratory symptoms. METHODS: Participants (n=1960) in this cross-sectional study of US Veterans (Veterans Affairs Cooperative Study 'Service and Health Among Deployed Veterans') completed an interviewer-administered questionnaire regarding 32 deployment exposures, grouped a priori into six categories: burn pit smoke; other combustion sources; engine exhaust; mechanical and desert dusts; toxicants; and military job-related vapours gas, dusts or fumes (VGDF). Responses were scored ordinally (0, 1, 2) according to exposure frequency. Factor analysis supported item reduction and category consolidation yielding 28 exposure items in 5 categories. Generalised linear models with a logit link tested associations with symptoms (by respiratory health questionnaire) adjusting for other covariates. OR were scaled per 20-point score increment (normalised maximum=100). RESULTS: The cohort mean age was 40.7 years with a median deployment duration of 11.7 months. Heavy exposures to multiple inhalational exposures were commonly reported, including burn pit smoke (72.7%) and VGDF (72.0%). The prevalence of dyspnoea, chronic bronchitis and wheeze in the past 12 months was 7.3%, 8.2% and 15.6%, respectively. Burn pit smoke exposure was associated with dyspnoea (OR 1.22; 95% CI 1.06 to 1.47) and chronic bronchitis (OR 1.22; 95% CI 1.13 to 1.44). Exposure to VGDF was associated with dyspnoea (OR 1.29; 95% CI 1.14 to 1.58) and wheeze (OR 1.18; 95% CI 1.02 to 1.35). CONCLUSION: Exposures to burn pit smoke and military occupational VGDF during deployment were associated with an increased odds of chronic respiratory symptoms among US Veterans.


Subject(s)
Bronchitis, Chronic , Occupational Exposure , Veterans , Humans , Adult , Bronchitis, Chronic/epidemiology , Bronchitis, Chronic/etiology , Occupational Exposure/adverse effects , Cross-Sectional Studies , Environmental Exposure/adverse effects , Smoke , Dyspnea/epidemiology , Dyspnea/etiology , Gases/analysis , Dust
6.
Environ Res ; 240(Pt 2): 117505, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37890828

ABSTRACT

Radon decay products include α-radiation emitting radionuclides that attach to airborne particles that have potential to promote oxidative tissue damage after inhalation. To assess associations between α-particle radioactivity (α-PR) with urinary biomarkers of oxidative tissue damage, 140 patients with chronic obstructive pulmonary disease (COPD) had up to four 1-week seasonal assessments (N = 413) of indoor (home) and ambient (central site) PM2.5 and black carbon (BC). Following environmental sampling, urine samples were analyzed for total and free malondialdehyde (MDA), biomarkers of lipid oxidation, and 8-hydroxyl-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative damage. Particle radioactivity was measured as α-activity on PM2.5 filter samples. Linear mixed-effects regression models adjusted for urinary creatinine and other personal characteristics were used to assess associations. Indoor α-PR was associated with an increase in 8-OhdG (8.53%; 95% CI: 3.12, 14.23); total MDA (5.59%; 95% CI: 0.20, 11.71); and free MDA (2.17%; 95% CI: 2.75, 7.35) per interquartile range (IQR) of α-PR [median 1.25 mBq/m3; IQR 0.64], similar adjusting for PM2.5 or BC. The ratio of indoor/ambient α-PR was positively associated with each biomarker and associations with ambient α-PR were positive but weaker than with indoor concentrations. These findings are consistent with a contribution of radon decay products as measured by α-PR to oxidative stress in patients with COPD, with a greater contribution of indoor radon decay products.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Radioactivity , Radon , Humans , Radon Daughters , Biomarkers , Oxidative Stress , Soot
7.
Environ Sci Technol ; 57(46): 18001-18012, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37839072

ABSTRACT

In 1987, the United States Environmental Protection Agency recommended installing a mitigation system when the indoor concentration of radon, a well-known carcinogenic radioactive gas, is at or above 148 Bq/m3. In response, tens of millions of short-term radon measurements have been conducted in residential buildings over the past three decades either for disclosure or to initially evaluate the need for mitigation. These measurements, however, are currently underutilized to assess population radon exposure in epidemiological studies. Based on two relatively small radon surveys, Lawrence Berkeley National Laboratory developed a state-of-the-art national radon model. However, this model only provides coarse and invariant radon estimations, which limits the ability of epidemiological studies to accurately investigate the health effects of radon, particularly the effects of acute exposure. This study involved obtaining over 2.8 million historical short-term radon measurements from independent laboratories. With the use of these measurements, an innovative spatial random forest (SRF) model was developed based on geological, architectural, socioeconomical, and meteorological predictors. The model was used to estimate monthly community-level radon concentrations for ZIP Code Tabulation Areas (ZCTAs) in the northeastern and midwestern regions of the United States from 2001 to 2020. Via cross-validation, we found that our ZCTA-level predictions were highly correlated with observations. The prediction errors declined quickly as the number of radon measurements in a ZCTA increased. When ≥15 measurements existed, the mean absolute error was 24.6 Bq/m3, or 26.5% of the observed concentrations (R2 = 0.70). Our study demonstrates the potential of the large amount of historical short-term radon measurements that have been obtained to accurately estimate longitudinal ZCTA-level radon exposures at unprecedented levels of resolutions and accuracy.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , United States , Radon/analysis , Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Random Forest , Midwestern United States , Housing
8.
Environ Epidemiol ; 7(5): e271, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37840862

ABSTRACT

Introduction: Indoor nitrogen dioxide (NO2) sources include gas heating, cooking, and infiltration from outdoors. Associations with pulmonary function, systemic inflammation, and oxidative stress in patients with chronic obstructive pulmonary disease (COPD) are uncertain. Methods: We recruited 144 COPD patients at the VA Boston Healthcare System between 2012 and 2017. In-home NO2 was measured using an Ogawa passive sampling badge for a week seasonally followed by measuring plasma biomarkers of systemic inflammation (C-reactive protein [CRP] and interleukin-6 [IL-6]), urinary oxidative stress biomarkers (8-hydroxy-2'deoxyguanosine [8-OHdG] and malondialdehyde [MDA]), and pre- and postbronchodilator spirometry. Linear mixed effects regression with a random intercept for each subject was used to assess associations with weekly NO2. Effect modification by COPD severity and by body mass index (BMI) was examined using multiplicative interaction terms and stratum-specific effect estimates. Results: Median (25%ile, 75%ile) concentration of indoor NO2 was 6.8 (4.4, 11.2) ppb. There were no associations observed between NO2 with CRP, 8-OHdG, or MDA. Although the confidence intervals were wide, there was a reduction in prebronchodilator FEV1 and FVC among participants with more severe COPD (FEV1: -17.36 mL; -58.35, 23.60 and FVC: -28.22 mL; -91.49, 35.07) that was greater than in patients with less severe COPD (FEV1: -1.64 mL; -24.80, 21.57 and FVC: -6.22 mL; -42.16, 29.71). In participants with a BMI <30, there was a reduction in FEV1 and FVC. Conclusions: Low-level indoor NO2 was not associated with systemic inflammation or oxidative stress. There was a suggestive association with reduced lung function among patients with more severe COPD and among patients with a lower BMI.

9.
Open Forum Infect Dis ; 10(7): ofad330, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37484899

ABSTRACT

Background: Over 870 000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have occurred among Veterans Health Administration users, and 24 000 have resulted in death. We examined early outcomes of SARS-CoV-2 infection in hospitalized veterans. Methods: In an ongoing, prospective cohort study, we enrolled veterans age ≥18 tested for SARS-CoV-2 and hospitalized at 15 Department of Veterans Affairs medical centers between February 2021 and June 2022. We estimated adjusted odds ratios (aORs), adjusted incidence rate ratios (aIRRs), and adjusted hazard ratios (aHRs) for maximum illness severity within 30 days of study entry (defined using the 4-category VA Severity Index for coronavirus disease 2019 [COVID-19]), as well as length of hospitalization and rehospitalization within 60 days, in relationship with demographic characteristics, Charlson comorbidity index (CCI), COVID-19 vaccination, and calendar period of enrollment. Results: The 542 participants included 329 (61%) who completed a primary vaccine series (with or without booster; "vaccinated"), 292 (54%) enrolled as SARS-CoV-2-positive, and 503 (93%) men, with a mean age of 64.4 years. High CCI scores (≥5) occurred in 61 (44%) vaccinated and 29 (19%) unvaccinated SARS-CoV-2-positive participants. Severe illness or death occurred in 29 (21%; 6% died) vaccinated and 31 (20%; 2% died) unvaccinated SARS-CoV-2-positive participants. SARS-CoV-2-positive inpatients per unit increase in CCI had greater multivariable-adjusted odds of severe illness (aOR, 1.21; 95% CI, 1.01-1.45), more hospitalization days (aIRR, 1.06; 95% CI, 1.03-1.10), and rehospitalization (aHR, 1.07; 95% CI, 1.01-1.12). Conclusions: In a cohort of hospitalized US veterans with SARS-CoV-2 infection, those with a higher CCI had more severe COVID-19 illness, more hospital days, and rehospitalization, after adjusting for vaccination status, age, sex, and calendar period.

10.
Sci Total Environ ; 897: 165352, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37419349

ABSTRACT

OBJECTIVES: Oxidative stress contributes to chronic obstructive pulmonary disease (COPD) pathophysiology. Associations between indoor (residential) exposure to particulate matter ≤2.5 µm in diameter (PM2.5) and one of its components, black carbon (BC), and oxidative stress are ill-defined. METHODS: Between 2012 and 2017, 140 patients with COPD completed in-home air sampling over one week intervals, followed by collection of urine samples to measure oxidative stress biomarkers, malondialdehyde (MDA), a marker of lipid peroxidation, and 8-hydroxy-2' -deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Ambient (central site) BC and PM2.5 were measured, and the ratio of indoor/ambient sulfur in PM2.5, a surrogate for residential ventilation and particle infiltration, was used to estimate indoor BC and PM2.5 of outdoor origin. Mixed effects linear regression models with a participant-specific random intercept were used to assess associations with oxidative biomarkers, adjusting for personal characteristics. RESULTS: There were positive associations (% increase per IQR; 95 % CI) of directly measured indoor BC with total MDA (6.96; 1.54, 12.69) and 8-OHdG (4.18; -0.67, 9.27), and similar associations with both indoor BC of outdoor origin and ambient BC. There were no associations with directly measured indoor PM2.5, but there were positive associations between indoor PM2.5 of outdoor origin and total MDA (5.40; -0.91, 12.11) and 8-OHdG (8.02; 2.14, 14.25). CONCLUSIONS: In homes with few indoor combustion sources, directly measured indoor BC, estimates of indoor BC and PM2.5 of outdoor origin, and ambient BC, were positively associated with urinary biomarkers of oxidative stress. This suggests that the infiltration of particulate matter from outdoor sources, attributable to traffic and other sources of combustion, promotes oxidative stress in COPD patients.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Pulmonary Disease, Chronic Obstructive , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Biomarkers , Pulmonary Disease, Chronic Obstructive/epidemiology , 8-Hydroxy-2'-Deoxyguanosine , Oxidative Stress , Soot/analysis , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Particle Size
11.
Respir Res ; 24(1): 91, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36959654

ABSTRACT

BACKGROUND: Little is known about the link between solar activity and variations in melatonin. In this study, we investigated if melatonin's major urinary metabolite, urinary 6-sulfatoxymelatonin (aMT6s), is lowest under periods of intense solar activity. METHODS: We investigated associations between high-energy solar particle events [Coronal Mass Ejection (CME) mass, speed and energy] on creatinine-adjusted aMT6s (aMT6sr) concentrations in 140 patients with chronic obstructive pulmonary disease (COPD) using up to four seasonal urine samples (n = 440). Mixed effect models with a random intercept for each subject were used to estimate associations, including effect modification attributable to diabetes, obesity, and reduced pulmonary function. RESULTS: Higher values of CME were associated with reduced aMT6sr concentrations, with stronger associations in patients with diabetes. An interquartile range (IQR) increase in natural log CMEspeed averaged through two days before urine collection was associated with a reduction of 9.3% aMT6sr (95%CI: - 17.1%, - 0.8%) in aMT6sr. There was a greater reduction in aMT6sr in patients with diabetes (- 24.5%; 95%CI: - 35.9%, - 11.6%). In patients without diabetes there was no meaningful association (- 2.2%; 95%CI: - 12%, 8.4%). There were similar associations with CMEenergy and CMEmass. There was no effect modification attributable to reduced pulmonary function or obesity. CONCLUSIONS: This is the first study in patients with COPD to demonstrate strong detrimental impact of high-energy solar particle events on aMT6sr, with greater associations in patients with diabetes. Since melatonin is an anti-oxidant, it is possible that adverse effects of intense solar activity may be attributable to a reduction in circulating melatonin and that patients with both COPD and diabetes may be more susceptible.


Subject(s)
Melatonin , Pulmonary Disease, Chronic Obstructive , Humans , Melatonin/urine , Solar Activity , Pulmonary Disease, Chronic Obstructive/diagnosis , Obesity , Circadian Rhythm
12.
Curr Opin Pulm Med ; 29(2): 83-89, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36597757

ABSTRACT

PURPOSE OF REVIEW: Military personnel deployed to Southwest Asia and Afghanistan were potentially exposed to high levels of fine particulate matter and other pollutants from multiple sources, including dust storms, burn pit emissions from open-air waste burning, local ambient air pollution, and a range of military service-related activities that can generate airborne exposures. These exposures, individually or in combination, can have adverse respiratory health effects. We review exposures and potential health impacts, providing a framework for evaluation. RECENT FINDINGS: Particulate matter exposures during deployment exceeded U.S. National Ambient Air Quality Standards. Epidemiologic studies and case series suggest that in postdeployment Veterans with respiratory symptoms, asthma is the most commonly diagnosed illness. Small airway abnormalities, most notably particularly constrictive bronchiolitis, have been reported in a small number of deployers, but many are left without an established diagnosis for their respiratory symptoms. The Promise to Address Comprehensive Toxics Act was enacted to provide care for conditions presumed to be related to deployment exposures. Rigorous study of long-term postdeployment health has been limited. SUMMARY: Veterans postdeployment to Southwest Asia and Afghanistan with respiratory symptoms should undergo an exposure assessment and comprehensive medical evaluation. If required, more advanced diagnostic considerations should be utilized in a setting that can provide multidisciplinary expertise and long-term follow-up.


Subject(s)
Air Pollution , Asthma , Military Personnel , Humans , Military Deployment , Air Pollution/adverse effects , Particulate Matter/adverse effects , Middle East
13.
J Expo Sci Environ Epidemiol ; 33(3): 1-7, 2023 05.
Article in English | MEDLINE | ID: mdl-35079108

ABSTRACT

BACKGROUND: Little is known about sources of residential exposure to carbonaceous aerosols, which include black carbon (BC), the elemental carbon core of combustion particles, and organic compounds from biomass combustion (delta carbon). OBJECTIVE: Assess the impact of residential characteristics on indoor BC and delta carbon when known sources of combustion (e.g., smoking) are minimized. METHODS: Between November 2012-December 2014, 125 subjects (129 homes) in Northeast USA were recruited and completed a residential characteristics questionnaire. Every 3 months, participants received an automated sampler to measure fine particulate matter (PM2.5) in their home during a weeklong period (N = 371 indoor air samples) and were also questioned about indoor exposures. The samples were analyzed using a transmissometer at 880 nm (reflecting BC) and at 370 nm. The difference between the two wavelengths estimates delta carbon. Outdoor BC and delta carbon were measured using a central site aethalometer. RESULTS: Geometric mean indoor concentrations of BC and delta carbon (0.65 µg/m³ and 0.19 µg/m³, respectively), were greater than central site concentrations (0.53 µg/m³ and 0.02 µg/m³, respectively). Multivariable analysis showed that greater indoor concentrations of BC were associated with infrequent candle use, multi-family homes, winter season, lack of air conditioning, and central site BC. For delta carbon, greater indoor concentrations were associated with apartments, spring season, and central site concentrations. SIGNIFICANCE: In addition to outdoor central site concentrations, factors related to the type of housing, season, and home exposures are associated with indoor exposure to carbonaceous aerosols. Recognition of these characteristics should enable greater understanding of indoor exposures and their sources.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Humans , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Particulate Matter/analysis , New England , Surveys and Questionnaires , Aerosols/analysis , Carbon/analysis , Soot/analysis
14.
Circulation ; 147(1): 35-46, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36503273

ABSTRACT

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.


Subject(s)
Cardiovascular Diseases , Heart Failure , Myocardial Ischemia , Stroke , Humans , Hot Temperature , Temperature , Cause of Death , Cold Temperature , Death , Mortality
15.
Environ Res ; 216(Pt 1): 114492, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36209792

ABSTRACT

BACKGROUND: Radon (222Rn) decay products can attach to particles in the air, be inhaled, and potentially cause airway damage. RESEARCH QUESTION: Is short-term exposure to particle radioactivity (PR) attributable to radon decay products emitted from particulate matter ≤2.5 µm in diameter (PM2.5) associated with pulmonary function in chronic obstructive pulmonary disease (COPD) patients? STUDY DESIGN AND METHODS: In this cohort study, 142 elderly, predominantly male patients with COPD from Eastern Massachusetts each had up to 4 one-week long seasonal assessments of indoor (home) and ambient (central site) PR and PM2.5 over the course of a year (467 assessments). Ambient and indoor PR were measured as α-activity on archived PM2.5 filter samples. Ratios of indoor/ambient PR were calculated, with higher ratios representing PR from an indoor source of radon decay. We also considered a measure of outside air infiltration that could dilute the concentrations of indoor radon decay products, the indoor/ambient ratio of sulfur concentrations in PM2.5 filter samples. Spirometry pre- and post-bronchodilator (BD) forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were conducted following sampling. Generalized additive mixed models were adjusted for meteorologic variables, seasonality, and individual-level determinants of pulmonary function. We additionally adjusted for indoor PM2.5 and black carbon (BC). RESULTS: PR exposure metrics indicating radon decay product exposure from an indoor source were associated with a reduction in FEV1 and FVC. Patients in homes with high indoor PR (≥median) and low air infiltration (

Subject(s)
Air Pollutants , Pulmonary Disease, Chronic Obstructive , Radioactivity , Radon , Humans , Male , Aged , Female , Radon Daughters , Air Pollutants/analysis , Cohort Studies , Particulate Matter/analysis , Soot , Environmental Exposure/analysis
16.
Chest ; 163(3): 599-609, 2023 03.
Article in English | MEDLINE | ID: mdl-36343686

ABSTRACT

BACKGROUND: The diagnosis of constrictive bronchiolitis (CB) in previously deployed individuals, and evaluation of respiratory symptoms more broadly, presents considerable challenges, including using consistent histopathologic criteria and clinical assessments. RESEARCH QUESTION: What are the recommended diagnostic workup and associated terminology of respiratory symptoms in previously deployed individuals? STUDY DESIGN AND METHODS: Nineteen experts participated in a three-round modified Delphi study, ranking their level of agreement for each statement with an a priori definition of consensus. Additionally, rank-order voting on the recommended diagnostic approach and terminology was performed. RESULTS: Twenty-five of 28 statements reached consensus, including the definition of CB as a histologic pattern of lung injury that occurs in some previously deployed individuals while recognizing the importance of considering alternative diagnoses. Consensus statements also identified a diagnostic approach for the previously deployed individual with respiratory symptoms, distinguishing assessments best performed at a local or specialty referral center. Also, deployment-related respiratory disease (DRRD) was proposed as a broad term to subsume a wide range of potential syndromes and conditions identified through noninvasive evaluation or when surgical lung biopsy reveals evidence of multicompartmental lung injury that may include CB. INTERPRETATION: Using a modified Delphi technique, consensus statements provide a clinical approach to possible CB in previously deployed individuals. Use of DRRD provides a broad descriptor encompassing a range of postdeployment respiratory findings. Additional follow-up of individuals with DRRD is needed to assess disease progression and to define other features of its natural history, which could inform physicians better and lead to evolution in this nosology.


Subject(s)
Bronchiolitis Obliterans , Lung Injury , Respiration Disorders , Respiratory Tract Diseases , Humans , Delphi Technique , Bronchiolitis Obliterans/diagnosis
17.
Curr Opin Pharmacol ; 67: 102303, 2022 12.
Article in English | MEDLINE | ID: mdl-36206621

ABSTRACT

Individuals with chronic traumatic spinal cord injury (SCI) develop progressive multi-system health problems that result in clinical illness and disability. Systemic inflammation is associated with many of the common medical complications and acquired diseases that accompany chronic SCI, suggesting that it contributes to a number of comorbid pathological conditions. However, many of the mechanisms that promote persistent systemic inflammation and its consequences remain ill-defined. This review describes the significant biological factors that contribute to systemic inflammation, major organ systems affected, health risks, and the potential treatment strategies. We aim to highlight the need for a better understanding of inflammatory processes, and to establish appropriate strategies to address inflammation in SCI.


Subject(s)
Spinal Cord Injuries , Humans , Spinal Cord Injuries/complications , Spinal Cord Injuries/therapy , Inflammation/complications
18.
J Expo Sci Environ Epidemiol ; 32(6): 926-931, 2022 11.
Article in English | MEDLINE | ID: mdl-36151455

ABSTRACT

BACKGROUND: The absence of air pollution monitoring networks makes it difficult to assess historical fine particulate matter (PM2.5) exposures for countries in the areas, such as Kuwait, which are severe impacted by desert dust and anthropogenic pollution. OBJECTIVE: We constructed an ensemble machine learning model to predict daily PM2.5 concentrations for regions lack of PM2.5 observations. METHODS: The model was constructed based on daily PM2.5, visibility, and other meteorological data collected at two sites in Kuwait. Then, our model was applied to predict the daily level of PM2.5 concentrations for eight airports located in Kuwait and Iraq from 2013 to 2020. RESULTS: As compared to traditional statistic models, the proposed machine learning methods improved the accuracy in using visibility to predict daily PM2.5 concentrations with a cross-validation R2 of 0.68. The predicted level of daily PM2.5 concentrations were consistent with previous measurements. The predicted average yearly PM2.5 concentration for the eight stations is 50.65 µg/m3. For all stations, the monthly average PM2.5 concentrations reached their maximum in July and their minimum in November. SIGNIFICANCE: These findings make it possible to retrospectively estimate daily PM2.5 exposures using the large-scale databases of historical visibility in regions with few particulate matter monitoring stations. IMPACT STATEMENT: The scarcity of air pollution ground monitoring networks makes it difficult to assess historical fine particulate matter exposures for countries in arid areas such as Kuwait. Visibility is closely related to atmospheric particulate matter concentrations and historical airport visibility records are commonly available in most countries. Our model make it possible to retrospectively estimate daily PM2.5 exposures using the large-scale databases of historical visibility in arid regions with few particulate matter ground monitoring stations. The product of such models can be critical for environmental risk assessments and population health studies.


Subject(s)
Meteorology , Particulate Matter , Humans , Retrospective Studies , Kuwait , Machine Learning
19.
PLoS One ; 17(7): e0268700, 2022.
Article in English | MEDLINE | ID: mdl-35881632

ABSTRACT

This study investigated the associations between solar and geomagnetic activity and circulating biomarkers of systemic inflammation and endothelial activation in the Normative Aging Study (NAS) cohort. Mixed effects models with moving day averages from day 0 to day 28 were used to study the associations between solar activity (sunspot number (SSN), interplanetary magnetic field (IMF)), geomagnetic activity (planetary K index (Kp index), and various inflammatory and endothelial markers. Biomarkers included intracellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), C-reactive protein (CRP), and fibrinogen. After adjusting for demographic and meteorological variables, we observed significant positive associations between sICAM-1 and sVCAM-1 concentrations and solar and geomagnetic activity parameters: IMF, SSN, and Kp. Additionally, a negative association was observed between fibrinogen and Kp index and a positive association was observed for CRP and SSN. These results demonstrate that solar and geomagnetic activity might be upregulating endothelial activation and inflammation.


Subject(s)
Intercellular Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1 , Biomarkers , C-Reactive Protein/analysis , Fibrinogen/analysis , Humans , Inflammation/metabolism , Intercellular Adhesion Molecule-1/metabolism , Plant Extracts , Vascular Cell Adhesion Molecule-1/metabolism
20.
JAMA Netw Open ; 5(6): e2216176, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35675074

ABSTRACT

Importance: Aerosol-borne SARS-CoV-2 has not been linked specifically to nosocomial outbreaks. Objective: To explore the genomic concordance of SARS-CoV-2 from aerosol particles of various sizes and infected nurses and patients during a nosocomial outbreak of COVID-19. Design, Setting, and Participants: This cohort study included patients and nursing staff in a US Department of Veterans Affairs inpatient hospital unit and long-term-care facility during a COVID-19 outbreak between December 27, 2020, and January 8, 2021. Outbreak contact tracing was conducted using exposure histories and screening with reverse transcriptase-polymerase chain reaction (RT-PCR) for SARS-CoV-2. Size-selective particle samplers were deployed in diverse clinical areas of a multicampus health care system from November 2020 to March 2021. Viral genomic sequences from infected nurses and patients were sequenced and compared with ward nurses station aerosol samples. Exposure: SARS-CoV-2. Main Outcomes and Measures: The primary outcome was positive RT-PCR results and genomic similarity between SARS-CoV-2 RNA in aerosols and human samples. Air samplers were used to detect SARS-CoV-2 RNA in aerosols on hospital units where health care personnel were or were not under routine surveillance for SARS-CoV-2 infection. Results: A total of 510 size-fractionated air particle samples were collected. Samples representing 3 size fractions (>10 µm, 2.5-10 µm, and <2.5 µm) obtained at the nurses station were positive for SARS-CoV-2 during the outbreak (3 of 30 samples [10%]) and negative during 9 other collection periods. SARS-CoV-2 partial genome sequences for the smallest particle fraction were 100% identical with all 3 human samples; the remaining size fractions shared >99.9% sequence identity with the human samples. Fragments of SARS-CoV-2 RNA were detected by RT-PCR in 24 of 300 samples (8.0%) in units where health care personnel were not under surveillance and 7 of 210 samples (3.3%; P = .03) where they were under surveillance. Conclusions and Relevance: In this cohort study, the finding of genetically identical SARS-CoV-2 RNA fragments in aerosols obtained from a nurses station and in human samples during a nosocomial outbreak suggests that aerosols may have contributed to hospital transmission. Surveillance, along with ventilation, masking, and distancing, may reduce the introduction of community-acquired SARS-CoV-2 into aerosols on hospital wards, thereby reducing the risk of hospital transmission.


Subject(s)
COVID-19 , Cross Infection , Nursing Stations , Aerosols , COVID-19/epidemiology , Cohort Studies , Cross Infection/epidemiology , Cross Infection/prevention & control , Disease Outbreaks , Hospitals , Humans , RNA, Viral , SARS-CoV-2/genetics , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...